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1 Bundles & Budget

1.1 Bundles

Bundles are the fundamental object of study in microeco-
nomics. In our models, when a consumer makes a choice,
they choose a bundle from the set of bundles available to
them (the budget set). Bundles can be anything or com-
bination of things you can think of. In this course, however,
bundles are usually going to be amounts of some things we
call goods and very often we will just look at two goods.

Bundle: x = (x1, x2)

Example. Ice Cream Bowls (the bundles) are made of up
two goods: scoops of vanilla ice cream and scoops of choco-
late ice cream. x1 is the amount of vanilla. x2 is the amount
of chocolate. (1, 1) represents one scoop of each flavor, (2, 2)
two scoops of each flavor, and (0.28, 100) a lot of chocolate
(100 scoops) and a little vanilla (0.28 scoops).

Since bundles with two goods are represented by ordered
pairs, we can plot bundles on and x1, x2 axis. An example
of this is shown below.
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Figure 1.1: A Few Bundles on The Cartesian Plane.

1.2 Feasible Set

The set of all bundles relevant to a model is called the
Feasible Set. The feasible set defines the scope of a model.

The Feasible Set: X is the “feasible” set of bundles.

Example. The feasible set for a model about choosing ice
cream bowls is the set of all ordered pairs possible ice cream
bowls: (x1, x2). Of course, it does not make sense to have a
negative amount of ice cream, so in this case we might say
X = R2

+. (This notation says that the feasible set is made
up of 2 real numbers that are non-negative.)
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2 Budget Set

Budget Set: B

The budget set is the set of bundles available to a particular
consumer. The budget set must be a subset of the feasible
set. In set notation we write: B ⊆ X

2.1 Budget Sets from Prices and Income

Not everything in the feasible set is going to be achievable
for every consumer. Some bundles are affordable and others
are not. The set of bundles that a consumer can actually
choose from is called the budget set. Our budget sets will
be constructed by assuming consumers have some income
and that each good has a price.

Prices: p1, p2: Price units of good 1 and good 2.
Income: m.

With these, we can define the cost of a bundle:

Cost of a bundle: p1x1 + p2x2

The set of all bundles that a consumer can afford is called
the Budget Set. We can define if formally this way:

Budget set: B ={x|x ∈ X &x1p1 + x2p2 ≤ m} .a

aIn “normal” language, this says the budget set is the set of bun-
dles such that the price of the bundle is less than income.

Since we are able to plot bundles, we can also plot the
budget set. To do this, it is easiest to first, we draw the
Budget Line. This is the set of bundles that are “just
affordable”.
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Budget Line: x1p1 + x2p2 = m

Now we can plot this on an x1, x2 plane. Let’s put x2 of the
vertical axis. In this case, it is useful to rewrite the budget
line into a form we are more familiar with:

x2 =
m

p2
− p1

p2
x1

This is now clearly an equation for a line with intercept m
p2

and slope −p1

p2
. Before we plot it, let’s interpret it a little.

Notice that if x1 = 0 we get x2 = m
p2
. This says “If I were

only to buy x2, I could afford m
p2

units of x2. Furthermore,
for every unit that we increase x1 by, x2 goes down by −p1

p2
.

This says “If I am spending all my money, if I want to buy
one more unit of x1, I have to give up −p1

p2
units of x2. This

is a very important thing to know about the slope of the
budget line. The slope of the budget line represents
the trade-off between x1 and x2 at the market prices.
We are now ready to plot the budget set. It is the budget
line and all of the bundles “below” the budget line.
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Figure 2.1: Graphical Representation of the Budget Set
with slope −p1

p2
and intercepts m

p1
and m

p2
.

2.2 Changing Prices and Income

We are often interested in looking at how the budget set
changes when we change on of the parameters of the model:
m, p1, or p2.

We can work out how the budget set changes by looking at
changes in the budget line. There are three key elements to
the budget line: the slope −p1

p2
and the intercepts m

p1
and

m
p2
.

When income changes, notice that only the intercepts change.
If m increases, both intercepts increase. This should be in-
tuitive. Since the intercepts represent how much of a good
we can buy if we only buy that good, then if income in-
creases, we can afford more. When income decreases, the
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opposite happens.

Importantly, when income changes, the slope of the budget
line does not change. This is because the trade-off between
the goods stays the same regardless of income (as long as
the price remain the same).

When a price changes on the other hand, the slop of the
budget line changes and one of the intercepts changes. For
instance, if p1 goes up, the slope of the budget line becomes
steeper (because more x2 has to be given up to get an extra
unit of x1). Furthermore, the x1 intercept decreases because
less x1 can be afforded if we only buy x1.

Some of the possible changes are demonstrated in the graphs
below.

Figure 2.2: How Budget Changes with Income.
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Figure 2.3: How Budget Changes with change in p1.

In summary:

m changes:

Both endpoints change. If m increases, m
p1

(the amount I
can buy of good 1 changes) increases and m

p2
(maximum

affordable x2) increases. The slope does not change. If m
decreases, the opposite happens.

p1 changes:

p1. If p1 goes up, the slope decreases (more negative). If p1

goes down, the slope increases. The x2 intercept stays the
same.

p2 changes:
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p2. If p2 goes up, the slope increases and the x2 intercept
decreases. If p2 goes down the slope decreases (becomes
more negative) and the x2 intercept increases. The x1 in-
tercept stays the same.

2.3 Taxes

Taxes represent a certain kind of price change. There are
two kinds of taxes that are used frequently: quantity and
ad valorem taxes.

A quantity tax is determined by number of units (xi)
purchased where an ad valorem tax is determined by the
value of the good purchased (xipi).

With a quantity tax of t dollars on good i, the amount
paid in tax is txi. With an ad valorem tax of percentage
τ on good i, the amount pain in tax is τ (pixi). The key
difference is that as price of a good changes, the amount
collected by the government does not change with a quan-
tity tax (assuming the amount purchased does not change),
but it does with an ad valorem tax. Most sales taxes are ad
valorem. However, there are quantity taxes we encounter
frequently. Pay close attention next time you are pumping
gas, there is usually a sticker showing how much you pay in
tax per gallon. That’s a quantity tax.

Here’s what happens to the budget line when we ad a quan-
tity tax and ad valorem tax on good 1.
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Quantity tax on good 1:

p1x1 + tx1 + p2x2 = m

(p1 + t)x1 + p2x2 = m

Ad valorem Tax on good 1:

(p1x1) + τ (p1x1) + p2x2 = m

[(1 + τ) p1]x1 + p2x2 = m

Notice that in both cases, the tax effectively just increases
the price of the good. This makes taxes easy to plot, they
have the same effect as a price increase. However, there are
some complex scenarios you should think about. What if a
quantity tax only kicked in after buying a certain amount of
some good? What if instead of a tax, a subsidy (a decrease
in price) was put on a good? What if that subsidy only held
for the first k units of the good? We will talk about many
of these scenarios in class and work with them in practice
problems.

3 The Preference Relation %

3.1 Definitions

Now that we know how to model what a consumer can
have, we should talk about what the prefer. We represent
preferences with a mathematical tool called a relation.
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Preference Relation
The preference relation denoted % is a set of statements
about pairs of bundles. The statement “bundle x is pre-
ferred to bundle x′” is shortened to:

x % x′

Example: Ice Cream
Suppose a consumer eats bowls of ice cream. The bun-
dles (bowls) are written with the vanilla scoops first and
chocolate second. For example: (2, 0) is two scoops of
vanilla and zero of chocolate.
A consumer who likes vanilla more than chocolate might
have these preferences:

(1, 0) % (0, 1) , (2, 0) % (0, 2)

A consumer who like more ice cream to less might have
these preferences:

(2, 0) % (1, 0) , (2, 2) % (1, 1)

A consumer who gets sick of ice cream: (does anyone want
to eat 100 scoops of ice cream?)

(1, 0) % (100, 0)

A consumer who does not care about flavor might have:

(1, 0) % (0, 1) , (0, 1) % (1, 0)

In the case of the consumer who does not care about flavor
above, notice that we have both (1, 0) % (0, 1) and (0, 1) %
(1, 0). That is, a scoop of vanilla is just as good as a scoop
of chocolate and a scoop of chocolate is just as good as a
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scoop of vanilla. When this is the case, we say the consumer
is indifferent.

Indifference Relation: ∼
When x % y and y % x we say “x is indifferent to y” and
write x ∼ y.

When a consumer is not indifferent, we say they have strict
preference for some bundle.

Strict Preference Relation: �
When x % y and not y % x we say “x is strictly preferred
to y” and write x � y.

3.2 Assumptions on %

In economics, we like to make as few assumptions about
consumer’s preferences as we can. There’s a surprising
amount we can say about consumer choice with just a few
assumptions about the structure of preferences.

The first three assumptions or axioms we will look at en-
sure that for any budget set, consumers will have some fa-
vorite or set of favorite bundles. That is, given any set of
bundles, they will actually be able to choose something. We
will talk more about why these assumptions assure that fact
in class.

Axiom 1. Reflexive.
For all bundles. The bundle is at least as good as itself.
In set notation:

∀x ∈ X : x % x

18



This is what we call a technical assumption. It does not
carry a lot of content for us to talk about, but it helps
ensure some minimal structure. After all, if a bundle was
not “as least as good as itself”, we’d have some trouble since
that would imply that either it cannot be compared to itself
or that it is both strictly better than itself and at the same
time strictly worse than itself.

Axiom 2. Complete.
For every pair of distinct bundles. Either one is at least
as good as the other or the consumer is indifferent.
In set notation:

∀x, y ∈ X&x 6= y : x % y or y % x or both

This axiom is a little more interesting. It says that for ev-
ery pair of bundles, the consumer has some preference. The
consumer can say “I’m indifferent.” but not “I don’t know”.
That is, everything is comparable.

Axiom 3. Transitivity.
If x is at least as good as y and y is at least as good as z
then x is at least as good as z.

x % y, y % z implies x % z

Transitivity lets us chain together preferences. It is really
the key and most powerful assumption here. Transitivity
ensures (along with the other assumptions) implies we can
always put a set of objects into a ranking (possible with
ties). Once we have a ranking, there’s always going to be
some things that are at the top of that ranking. Those are
the things our consumers will choose.
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3.3 Example of Violating Transitivity

In many circumstances, transitivity is an uncontroversial
assumption. However, it is possible to construct perfectly
reasonable decision processes where transitivity fails. Here
is one of those examples:

Suppose there are three people on a dating app:

Person 1. Rich, Very Intelligent, Average Looking

Person 2. Financially Constrained, Genius, Good Looking

Person 3. Moderately Well Off, Average Intelligence, Best
Looking

Now let’s compare every pair of people. Person 2 is both
more intelligent and better looking than person 1. Person
3 is wealthier and better looking than person 2. Person 1
is wealthier and more intelligent than person 3.

From this, we can construct a preference ordering: 2 �
1, 3 � 2, 1 � 2. Notice, this is intransitive. It is clear who is
better in any pair, but who would is is best from the set of
all three? This kind of multi-dimensional comparison can
easily cause intransitivity.

3.4 From Preference to Choice

So far, we have a pretty satisfying model of preferences,
but economics is about choice. How do we model choice?
Intuitively, we want to write down formal that, from any
budget set, the consumer will choose the best thing (accord-
ing to their preferences). To do this, let’s define a Choice
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Function. We can write:

C : B → B

This says that C is a function that maps the set B (a bud-
get set) into itself. That is, from the set B, the function
C returns some objects from the set B. This statement
ensures that the set of “choices” will always be a subset of
the budget set. In set notation, that would be expressed as:
C (B) ⊆ B.

That’s good, but there’s no structure here involving the
preference relation. What we really want is that C (B) (the
potential choices from the set budget set B) is the set of
all bundles in B that are at least as good as everything
else in B. We can express that formal as follows.

C (B) = {x|x ∈ B : ∀x′ ∈ B, x % x′}

This says, C (B) is defined to be all the bundles (x) in the
budget set (B) such that (:) for all (∀) other bundles (x′)
in (∈) the budget set, we have that x is at least as good
as x′. This is not the easiest statement to read if you are
not familiar with this kind of formal expression, but I hope
that you will agree that it is a rather elegant, and efficient
way of expressing an otherwise rather complicated idea.

Notice that in the example in the last section of choosing a
partner on a dating app, there is no partner that is at least
as good as all the other partners. In that case, the choice
set is empty! Having empty choice sets is potentially
problematic for a mathematical model of choice. So, when
can we be sure that there is always some bundle that a
consumer will choose from any budget set in our models.
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Fortunately for us, our three assumptions: reflexivity, com-
pleteness, and transitivity are enough to ensure that the
consumer will always have some favorite things in any bud-
get and will be able to make a choice. As an aside, transitiv-
ity is even a little stronger than we need for this, as it also
ensures a form of consistency of choice called “coherence”.
We will talk a little about that in class.

3.5 Indifference Curves and theWeakly Pre-
ferred Set

At this point, we have spent a good amount of time looking
at how to formally express preferences. In practice, it is
hard to work with these formal statements. Like anything
else, it is nice to be able to visualize preferences. We can
achieve this through indifference curves.

Indifference curve: an indifference curve is a set bun-
dles such that a consumer is indifferent between every pair
of bundles in the set.

In mathematics terms, an indifference curve is called an
equivalence class. That is, it is some set that are “equiva-
lent” in terms of preferences. This term is not necessary to
know, but it may come up in future courses.

Note: There are many indifference curves. We only
sketch a few to get an idea of the “shape” of preferences.
Every bundle has an indifference curve passing through it.

Let’s look at an example. Suppose we have a consumer who
likes apples just as much as oranges. They are indifferent
between the bundle “two apple” (2, 0) and the bundle “two
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orange” (0, 2) . These two bundles are on the same indif-
ference curve in the graph below. The consumer is also
indifferent between (4, 0) , (2, 2) and (0, 4) they are on the
same indifference curve in the graph below.

It is very useful to interpret the slope of an indifference
curve at a particular point. Pick a bundle (x1, x2) and
imagine adding a unit of x1 to get a new bundle (x1 + 1, x2).
If the consumer wants more x1, then the resulting bundle
must be better, that is (x1 + 1, x2) � (x1, x2). We now
much ask, how much would we have to decrease x2 by to
get a new bundle (x1 + 1, x2 − b) that the consumer is in-
different to the original? That is, what is the b such that
(x1 + 1, x2 − b) ∼ (x1, x2). In a sense, we are asking, how
much x2 is a consumer willing to give up to get an extra unit
of x1. Since (x1 + 1, x2 − b) ∼ (x1, x2) they must be on the
same indifference curve. So, we are also asking, if we start
on some point of an indifference curve, and move one unit
right, how far down do we need to move to bump into that
same indifference curve. That amount is approximately the
slope of the indifference curve.1

1Technically the slope at a particular point is defined as the limit
of the ratio of how far we have to move down to how far we move to
the right as that distance we move to the right shrinks to zero. You
know, calculus stuff.
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Figure 3.1: Indifference curves when apples are just as good
as oranges.

3.6 Indifference Curves Cannot Cross

What can we say about the shape of indifference curves?
It turns out, with only the assumptions of reflexivity, com-
pleteness, and transitivity: not much. Indifference curves
could have some wild shapes. But under these assumptions
there is one thing we know: two distinct indifference
curves cannot cross.

Below is a proof of this claim. You are not responsible for
knowing this proof, but you may be interested to see the
logic. Understanding the logic might help you understand
the way our axioms are used in proving formal statements
about preferences.
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Proof the two indifference curves cannot cross.
Look at the graph below. Here I have drawn two distinct
indifference curves that cross each other. Notice that if
two curves cross, they have to cross somewhere. I have
labeled that somewhere x in the graph. This is a bundle
that is on both indifference curves. However, since these
are distinct indifference curves, there must be some bundle
x′ and x′′ that are respectively on the different indifference
curves and thus not indifferent to each other. However,
since x is on both indifference curves, we must have x′ ∼ x
and x′′ ∼ x. Let’s derive a contradiction to prove this
scenario can never happen.
Since it is not the case that x′ ∼ x′′ if preferences are
complete, it must be that either x′ � x′′ or x′′ � x′. If
we take the first possibility x′ � x′′ we have x′ � x′′ and
x′′ ∼ x. By transitivity, it must be that x′ � x but we
already know that x′ ∼ x. If we take the second possibility
x′′ � x′ we have x′′ � x′ and x′ ∼ x. By transitivity, it
must be that x′′ � x but we already know that x′′ ∼ x.
Thus, no matter what, we have found a contradiction.

Figure 3.2: Indifference curves cannot cross if preferences
are transitive.
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3.7 Common Types of Preferences

There are a few “families” of preferences you should know
about. These different families represent different types of
trade-offs consumers are willing to make between two goods.

3.7.1 Perfect Substitutes

Perfect Substitutes preferences are such that a con-
sumer’s willingness to trade-off between the goods is the
same everywhere.

The indifference curves are always downward sloping lines
with the same slope. Recall The slope measures the amount
of x2 the consumer is willing to give up to get 1 more unit
of x1.

Steep slope: stronger preference for x1.

Shallow slope: stronger preference for x2.
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Figure 3.3: Indifference curves for perfect substitutes pref-
erences. This consumer would be willing to give up 2 units
of x2 in exchange for 1 unit of x1.

3.7.2 Perfect Complements

Perfect Complements preferences are such that a con-
sumer must consume the goods in a fixed proportion.

An example of this is left and right shoes. You always
consume left and right shoes in a 1-to-1 proportion. That
is, you want one left shoe for every right shoe. If you have
the same number of left and right shoes, you are not willing
to give up any left shoes to get more right shoes, because
that would reduce the number of usable pairs you have.

Another example is ingredients in a recipe. Suppose you
bake pies and a pie always needs two apples and one crust.
If you have two apples and one crust, or four apples and
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two crusts, or six apples and three crusts, you would not
be willing to give up apples to get more crusts or give up
crusts to get more apples, it would reduce the number of
pies you can make.

The indifference curves for these preferences are L-shaped.
The kinks of these L-shaped curves pass along a line through
the origin where the points on that line are the points where
the goods are consumed in the “correct” proportion. That
is, where there is not too much of either good. For left and
right shoes, if left shoes are x1 and right shoes are x2, that
the line x2 = x1 (the 45-degree line). For pies, if apples are
x1 and crusts are x2 then the line through the kink points
is where 2x2 = x1. I have plotted these below.

Figure 3.4: Indifference curves for perfect complements
preferences where Left/Right shoes must be consumed in
a 1-to-1 one ratio.
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Figure 3.5: Indifference curves for perfect complements
preferences where the goods are consumed in a 2-to-1 ratio.
In this case, 2 apple and 1 crust make a pie.

3.7.3 Bads

So far, our examples have involved situations where both
goods are in fact “good”. That is, the consumer wants more
(or at least does not want less) of either good. It is pos-
sible to model situations where that is not true. When a
consumer wants less of something, we call that thing a bad.

When both x1 and x2 are goods, indifference curves are
downward sloping. It is worth pausing to think about the
intuition for this. The slope represents the tradeoff a con-
sumer is willing to make between x1 and x2. Approxi-
mately, it is how much x2 a consumer will give up to get
one more unit of x1. But now suppose x2 is a bad. If a con-
sumer gets one more unit of x1, they will be happier. If we
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take away from x2 they will be even happier than that! We
could not possibly end up on the same indifference curve
by adding some x1 and taking away some x2. We have
to add x2 to bring them back to indifference. Thus, the
indifference curve is actually upward sloping!

The indifference curve will also be upward sloping if x1 is a
bad and x2 is a good. Try to convince yourself of that using
the same logic as above. However, if both goods are bad,
the indifference curve is again downward sloping. However,
unlike when both x1 and x2 are goods, preference increases
as we move towards the origin: the bundle (0, 0). These are
demonstrated in the graphs below.

Figure 3.6: When one good is a “bad”, indifference curves
slope upward!
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Figure 3.7: When both goods are bad, indifference curves
slope down, but preference “increases” towards the origin
(to the south west).

3.8 Well Behaved Preferences

As outlined in section 3.4the assumptions of reflexivity,
completeness, and transitivity are sufficient to model con-
sumers that are able to make choices from any budget set.
That effectively enough to let us do some economics. How-
ever, preferences meeting just those conditions can be a
little wild. We know that distinct indifference curves can-
not cross but that’s about it. Sometimes, we want to make
some assumptions that will ensure that preferences are a
little more well behaved. The following assumptions will
prove convenient.
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3.8.1 Monotonicity

Monotoncitiy: The assumption that everything is a
“good”.

There are two forms of this assumption. Strict and Weak.
Strict monotonicity says that more of any good makes a con-
sumer strictly better off. Weak monotonicity says that more
of every good makes a consumer strictly better off, but more
of any particular good might not. For instance, perfect sub-
stitutes are strictly monotonic. Perfect complements are
weakly monotonic. We sometimes just call weakly mono-
tonic “monotonic” (I know it must makes things more confusing-
that’s the problem with natural language. So, let’s be for-
mal:

Strict Monotonicity: For two bundles (x1, x2) and
(y1, y2), (x1, x2) % (y1, y2) if x1 ≥ y1 and x2 ≥ y2.
(x1, x2) � (y1, y2) if either x1 > y1 or x2 > y2

Weak Monotonicity. (AKA “Monotonic”): For two
bundles (x1, x2) and (y1, y2), (x1, x2) % (y1, y2) if x1 ≥ y1

and x2 ≥ y2. (x1, x2) � (y1, y2) if both x1 > y1 and
x2 > y2

Weak monotonicity implies indifference curves are down-
ward sloping (they have negative slope or zero slope) that
is, they cannot be strictly upward sloping. Furthermore, it
implies that preference increases to the north east. That
is, as we move out, away from the origin, the bundles get
better. Strict monotonicity additionally implies indifference
curves are always strictly downward sloping. It is worth
thinking about why these assumptions imply these

32



facts about the slope of the indifference curves and
what those facts translates to in terms of trade-offs.

Note that, it is often possible to convert non-monotonic
preference to monotonic preference by thinking of a “bad”
as the “lack of a bad”. For instance, if we were writing a
model of preferences over candy and Brussels sprouts we
might have the bundle (2, 2) which is two candies and two
Brussels sprouts. If Brussels sprouts are a bad, then we
might have: (2, 2) � (2, 3). These preferences are non-
monotonic. However, suppose we rewrite the number of
sprouts as “how many less than 10 sprouts do I have?”.
Then the two bundles are (2, 8) and (2, 7). They are the
same physical bundle so we still have (2, 8) � (2, 7), but
notice now we have patched up monotonicity.

Monotonicity ensures that, as long as there is no “savings” in
the model, consumers will always spend all of their money.
Why not? If more is better, then spending less than their
income must be sub-optimal- they could get more of ev-
erything. This is helpful, since it tells us we can look for
optimal bundles on the budget line.

Technically, we do not even need monotonicity for this to
be true, a far weaker condition called local nonsatiation will
ensure the same thing. Local nonsatiation says that for any
bundle, there is another bundle “nearby” that is strictly bet-
ter. That bundle might involve less stuff, it might involve
more stuff. Effectively it ensures that if the consumer were
not spending all of their money, they could change their
bundle by a “little bit” and make themselves better off. Be-
cause of this, they could not possibly spend less than their
income, because (by local nonsatiation) there will always be
some other affordable bundle nearby that is strictly better.
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You do not need to know about this, but I think it is kind
of interesting.

3.8.2 Convexity and Strict Convexity

Convexity: The assumption that mixtures are better
than extremes.

Monotonicity tells us we can look for optimal bundles on
the budget line. But where? This assumption can help
tell us where to look. It is not a requirement for doing
economics by any means. It is a convenience. There are
two forms of this assumption. Both of them essentially
say that if we take two bundles that are indifferent and mix
them together, we will get a better bundle. Strict convexity
says that bundle is strictly better and weak convexity (or
just convexity) just tells us that it is weakly better. Here
are the formal statements.

Strictly Convex: For two indifferent bundles (x1, x2) ∼
(y1, y2), for any t ∈ (0, 1), the mixture given by (tx1 + (1− t) y1, tx2 + (1− t) y2) �
(x1, x2) and (tx1 + (1− t) y1, tx2 + (1− t) y2) � (y1, y2).

Weakly Convex: For two indifferent bundles (x1, x2) ∼
(y1, y2), for any t ∈ [0, 1], the mixture given by (tx1 + (1− t) y1, tx2 + (1− t) y2) %
(x1, x2) and (tx1 + (1− t) y1, tx2 + (1− t) y2) % (y1, y2).

Notice how we are mixing the bundles together. We take
a t portion of the bundle (x1, x2) and mix it with a (1− t)
portion of (y1, y2). To demonstrate this, let’s mix together
(2, 1) and (1, 2). If we take t = 0.5, we are taking half
of (2, 1) which is (1, 0.5) and adding half of (1, 2) which is
(0.5, 1). The result is the bundle (1.5, 1.5). If instead we
take (0.25) we get a quarter of (2, 1) which is (0.5, 0.25) and
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three-quarters of (1, 2) which is (0.75, 1.5). Adding these
together we get the bundle (1.25, 1.75).

The mixtures are also referred to as “convex combinations”.
If we were to plot all of the convex combinations of two
points, the convex combinations would simply be
the straight line through the two points.

Using this, we can talk about the geometry of indifference
curves meeting these conditions. Under the assumption of
monotonicity:

If preferences are strictly convex, then the indifference
curve always lies strictly below a line between any
two points on that indifference curve.

If preferences are weakly convex, then the indifference
curve always lies weakly below a line between any
two points on that indifference curve.

An example of an indifference curve for strictly convex pref-
erences is shown below.
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Figure 3.8: Example of Convex Indifference Curves

3.9 Marginal Rates of Substitution and Slope
of the Indifference Curve

The marginal rate of substitution is defined as the rate at
which a consumer will give up x2 in order to get more x1.
We have already seen that this rate of trade-off is captured
by the slope of the indifference curve at a point. Approx-
imately, we can think of the MRS as how much x2 a con-
sumer would give up to get one more unit of x1. The MRS
and equivalently the slope of the indifference curves will
play a critical role in finding optimal bundles. We will see
that in the next two sections.
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4 Utility

4.1 Definition

A utility function is a way of assigning “scores” to bundles,
such that better bundles according to % get a higher score.
For example, suppose a consumer’s preferences are:

A � B � C ∼ D

Some utility functions that represent these preferences:

U (A) = 10, U (B) = 5, U (C) = U (D) = 0

U (A) = 12, U (B) = 1, U (C) = U (D) = −100

Utility function: U (x) represents preferences % when
for every pair of bundles x and y, U (x) ≥ U (y) if and
only if x % y.

That is, if x is better than y according to % it gets a higher
utility according to U (). To reiterate, a utility function is a
convenient mathematical representation of the fundamental
preference relation %. We do not need to believe utility
functions actually exist to use them, since they are just
how we represent preferences.

We say that utility is ordinal since the magnitude of the
numbers are meaningless, and only the relationships mat-
ter. There is no sense in which two times higher utility
means that the preference is two times stronger. If we could
say something like that, we could call utility a cardinal
measure. Since we can only infer the ranking of bundles,
but not say anything about how strong the preferences are
from the relation %, the utility function that represents %
also has no such content.
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4.2 Monotonic Transformations

Because utility is ordinal, we are free transform one util-
ity function into another, as long as it maintains the same
preferences. Any strictly increasing function of a util-
ity function represents the same preferences as the
original utility function. For example, suppose:

U (x1, x2) = x1 + x2

This represents the preferences of someone who only cares
about the total amount of stuff, but not the composition.
In fact, this utility function represents perfect substitutes
preferences. Here are some other utility functions that rep-
resent the same preferences:

Ũ (x1, x2) = x1 + x2 + 100 = U (x1, x2) + 100

Ũ (x1, x2) = (x1 + x2)
2

= (U (x1, x2))
2

Since the functions f (u) = u + 100 and f (u) = u2 are
strictly increasing for u ≥ 0 (which is always true for the
original utility function), these are monotonic transforma-
tions of the original utility function. It is often useful to
use monotonic transformations to modify a utility function
that is hard to work with into one that is more convenient.

For instance, suppose we had the utility function: u =
38 (x1 + x2)

2
+ 100. We could transform this into the util-

ity function u = x1 + x2 which is much simpler. The two
utility functions represent the exactly same preferences.
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4.3 MRS from Utility Function

As we have discussed above, the Marginal Rate of Sub-
stitution (MRS) is the slope of the indifference curve. We
can get the MRS from a utility function by taking the ra-
tio of partial derivatives of the utility function. Let’s first
define those partial derivatives:

Marginal Utility of good i is mui = ∂u(x1,x2)
∂xi

.

With this, we can define the MRS in terms of the marginal
utilities:

The Marginal Rate of Substitution (MRS) is given

by: MRS = −mu1

mu2
= −

∂u(x1,x2)
∂x1

∂u(x1,x2)
∂x2

Note that MRS is an ordinal property since it represents
the slope of indifference curves. Because two preferences
that are the same have the same indifference curves, they
will also have the same MRS. This is actually a convenient
way to check whether two utility functions represent the
same preferences.

Same MRS, same preferences.

In the section above, I claimed these two utility functions
represent the same preferences: u = 38 (x1 + x2)

2
+ 100

and u = x1 + x2. Their marginal rates of substitution are
identical:

−
∂(38(x1+x2)2+100)

∂x1

∂(38(x1+x2)2+100)
∂x2

= −76 (x1 + x2)

76 (x1 + x2)
= −1
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−
∂(x1+x2)
∂x1

∂(x1+x2)
∂x2

= −1

1
= −1

4.4 Examples of Utility Functions

4.4.1 Perfect Substitutes

A constant MRS implies a constant willingness to trade
off between the two goods. This is the case for perfect
substitutes.

u (x1, x2) = ax1 + bx2

MRS = −a
b

4.4.2 Quasi-Linear

With quasi-linear preference, a consumer only gets tired of
one of the two goods. For instance, if x1 is ice cream and
x2 is money, we might want to represent preferences where
the amount of money a consumer is willing to give up to
get another unit of ice cream is decreasing in the amount of
ice cream. This can be achieved with a quasi-linear utility
function.

One common quasi-linear utility function is:

u (x1, x2) = ln (x1) + x2
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Let’s look at the MRS:

MRS = −
∂(ln(x1)+x2)

∂x1

∂(ln(x1)+x2)
∂x2

= − 1

x1

This says that as ice cream increases, (approximately) the
amount of money a consumer is willing to give up to get
another scoop of ice cream is one over the number of scoops
they already have. With one scoop, they will give up a
dollar to get another scoop. With two scoops, the would
only give up 50 cents. And so on...

Another example of a quasi-linear utility function:

u (x1, x2) =
√
x1 + 10x2

Practice taking the MRS of this function. Notice that it
only depends on the amount of (ice cream) x1!

4.4.3 Cobb-Douglass

Now suppose we want the consumer to get tired of both
goods as they get more. We can use a Cobb-Douglass
utility function:

u (x1, x2) = xα1x
β
2

Let’s look at the MRS:

mu1 =
∂
(
xα1x

β
2

)
∂x1

= αxα−1
1 xβ2
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mu2 =
∂
(
xα1x

β
2

)
∂x2

= βxα1x
β−1
2

MRS = −MU1

MU2
= −αx

α−1
1 xβ2

βxα1x
β−1
2

= −αx
α
1x
−1
1 xβ2

βxα1x
β
2x
−1
2

= −αx
−1
1

βx−1
2

= −α
β

x2

x1

This says that the amount of x2 a consumer is willing to
give up to get another unit of x1 is directly proportional to
the ratio of x2 to x1. If they have a lot of x2 relative to x1

they will give up more x2 to get another unit of x1 and vise
versa.

Let’s compare two CD Functions:

Increasing the exponent on either good will increase the
consumers desire for that good. They will still get tired of
it, but between two consumers, one with a larger exponent
on a good, that consumer will have a stronger desire for the
good at the same bundle.

u (x1, x2) = x1x2

MRS = −x2

x1

At the point (1, 1): MRS = −1. Now let’s increase the
exponent on x1 to 10:
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ũ (x1, x2) = x10
1 x2

MRS = −10
x2

x1

At the point (1, 1): MRS = −10

Notice that the consumer with ũ (x1, x2) = x10
1 x2 would be

willing to give up ten-times more x2 to get the same amount
of x1 as the consumer with utility function u (x1, x2) =
x1x2.

5 Choice

Now that we have modeled budgets (what is available),
preferences (what is desired) and know how to represent
those preferences with utility functions, we are ready to
talk about what consumers actually choose from the set of
available bundles.

We have already modeled choice. Formally, we want to find
the set of bundles that meet this condition

X∗ = {x : x ∈ B&∀x′ ∈ B, x % x′}
This says that the set of optimal bundles X∗ are bundles
like x that are in the budget set B and are at least as good
as any other x′ that is also in the budget set.

There is one really powerful observation that makes the
process of finding optimal bundles much simpler. In think-
ing about where an optimal bundle lives on the graph of
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preferences and budget, there are really only three pos-
sibilities. These come out of a very powerful observation
about trade-offs when preferences are complete, transi-
tive and monotone.

5.1 Three Possibilities

Assume% is reflexive, complete, transitive and%mono-
tonic. A bundle cannot be optimal if it is on an indifference
curve that crosses into the interior of the budget set.

The proof proceeds by contradiction. You are not respon-
sible for this, but it might be nice to read through and try
to understand. The proof is shown graphically below.

Suppose we found a bundle x we thought was optimal but
was on an indifference curve that passed into the interior
of the budget set. Then there is some bundle x′ on the
interiod of the duget set such that x ∼ x′ (since it is on the
same indifference curve). Since x′ is on the interior of the
budget set, there is some other bundle x′′ such that x′′ is in
the budget set and has more of every good than x′. Since
preferences are monotonic, x′′ � x′. Since preferences are
transitive, we have x′′ � x′ ∼ x and so x′′ � x.

44



Figure 5.1: An optimal bundle cannot be on an indifference
curve that passes “into” the budget set.

With this result in hand, there are only three ways a bundle
can be on an indifference curve that is in the budget set and
does not exist on an indifference curve that passes into the
interior of the budget set. First of, it must be on the budget
line. Then we have three possibilities:

1. (Tangent) It is at bundle where the indifference curve at
that bundle had the same slope as the budget line.

2. (Touching but not tangent) The bundle is a “non-smooth”
point on the indifference curve, but the that point just
touches the budget line.

3. (Boundary) We are at one of the boundaries (x1 = 0 or
x2 = 0) in this case the slope of the indifference curve and
the slope of the budget need not be equal.
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Figure 5.2: Graphical Examples of the Three Possibilities

Under some weak conditions (we can take derivatives of
the utility function). The tangency condition is necessary
for an interior optimum (involves consuming some of both
things).

That is, if there is an optimal bundle that involves consum-
ing some of both goods, it must have the property that the
slope of the indifference curve at that optimal bundle is the
same as the slope of the budget line. This is a very powerful
result and also suggests why we are going to take a lot of
derivatives in this class.

This condition is formalized by the familiar equation:

MRS = −p1

p2

Note, this is precisely that the slope of the indifference curve
at a point is equal to the slope of the budget equation at
that point. This also implies the trade-offs are the same.

The MRS is the way a consumer is willing to trade off
between the goods and the slope of the budget equation is
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the rate a which the must in order to stay in their budget.
If these are not equal either the consumer is willing to give
up more x2 than they have to in order to get more x1 or they
are willing to give up more x1 than they have to in order to
get more x2. Neither situation can be optimal... unless they
can not get any more x1 or x2. That would be the case
at the boundary. That is, we can have an optimal bundle
where this condition is not met, but it can only occur at a
boundary or where this condition is not defined.

5.2 Examples

Let’s look at a few examples of finding optimal bundles.

5.2.1 Cobb Douglass:

u (x1, x2) = x1x2

p1x1 + p2x2 = m

This is a smooth utility function. We can find its MRS
everywhere. Let’s write down the tangency condition:

MRS = −
∂(x1x2)
∂x1

∂(x1x2)
∂x2

= −p1

p2

−x2

x1
= −p1

p2

This simplifies to:

47



∗x1p1 = x2p2

We also know that an optimal bundle occurs on the budget
line. Let’s write this down as a second condition. Budget
Condition:

∗ ∗ x1p1 + x2p2 = m

We have two conditions and two unknowns. Plug the tan-
gency condition into budget condition to get:

x1p1 + x1p1 = m

Simplify this:

x∗1 =
1

2

m

p1

Plug this back into either of the two conditions gives us:

x∗2 =
1

2

m

p2

The optimal bundle is:

( 1
2m

p1
,

1
2m

p2

)
Note the form of this bundle. 1

2m is half of the income.
These optimal bundles have the consumer spending half of
their income on both goods.
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5.2.2 Perfect Substitutes

The utility function is:

u (x1, x2) = 2x1 + x2

Prices and income are: p1 = 1, p2 = 1, m = 10. This gives
us the budget equation:

1x1 + 1x2 = 10

Finding the tangency condition:

−2

1
= −1

1

−2 = −1

Ohh... But this is never true. The consumer would always
be willing to give up 2 units of x2 to get one unit of x1. But
they only have to give up 1. There can’t be an interior
solution. They will just buy as much x1 as possible.

If you ever get lost doing a perfect substitutes problem you
can use the following trick. With perfect substitutes, there
has to be a boundary solution. Just check the utility of
both intercepts (buying only x1 and buying only x2) see
which is better. If they give the same utility, any bundle
they can afford is optimal. In this problem we get:

Only consume x1:
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(
m

p1
, 0

)
= (m, 0)

u (m, 0) = 2m = 20

Only consume x2: (
0,
m

p2

)
= (0,m)

u (0,m) = m = 10

Since consuming only x1 gives me more utility, that is the
optimal bundle:

(m, 0)

5.2.3 Anything is Optimal

Here is an example where any affordable bundle is optimal.

u (x1, x2) = 2x1 + x2

p1 = 2, p2 = 1, m = 10. The budget equation is:

2x1 + 1x2 = 10

The tangency condition is:
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−2

1
= −2

1

−2 = −2

All of the bundles such that 2x1 + 1x2 = 10 are optimal.
Confirm this by checking the utility of some bundles on this
line.

5.2.4 Perfect Complements

Suppose these are the utility function and budget equation:

u (x1, x2) = min {x1, x2}

2x1 + x2 = 15

We know the budget condition must be true at the opti-
mum.

∗ ∗ 2x1 + x2 = 15

But, we can not take derivatives here. What is the other
condition?

In this case, we have to use a little intuition. If the consumer
ever consumed a bundle that was not on the kink of an
indifference curve, than they could spend less on some good
and use the leftover money to buy more of both goods,
increasing utility.
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“No Waste Condition”. (Equation for the “kink” points).

∗x1 = x2

Solving this equation together with the budget equation
gives us:

x1 = 5, x2 = 5

5.2.5 Perfect Complements (2 Apples, 1 Crust)

Let’s try another perfect complements problem. Suppose
the utility function is:

u (x1, x2) = min

{
1

2
x1, x2

}
This represents the utility of someone who only eats pies
and makes pies by using two apples and one crust per pie.

Suppose the budget equation is:

∗ ∗ 2x1 + x2 = 15

In this case, the “no waste condition” (equation for the
“kink” points) is:

1

2
x1 = x2

Notice we get this by setting the two terms in the min {}
function equal to each-other.
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Combine the conditions and solve to get:

x1 = 6, x2 = 3

5.2.6 Max Preferences

The utility and the budget are:

u (x1, x2) = max {x1, x2}

2x1 + x2 = 15

Try this one at home: what is the optimal bundle?

6 Demand

In the previous chapter, we looked at how to find demand
(the optimal bundle) given a utility function, prices, and
income. In this chapter, we look at how demand changes
when we change one of those parameters (p1, p2,m).

6.1 Marshallian Demand

The Mashallian demand is the optimal amount of a good,
given prices and income. We denote these this way:

x∗1 (p1, p2,m) , x∗2 (p1, p2,m)
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For instance, the Marshallian for someone with utility func-
tion u (x1, x2) = x1x2 is:

x∗1 =
1
2m

p1
, x∗2 =

1
2m

p2

Marshallian for someone with utility function u (x1, x2) =
min {x1, x2} is:

x∗1 =
m

p1 + p2
, x∗2 =

m

p1 + p2

We can now look at how these types of demands change.

6.2 Changes in Income

We first ask, “what happens to demand when we change
income”? We can formalize this by thinking of this change
as a derivative. We want to know what are the values of
∂x∗1(p1,p2,m)

∂m and ∂x∗2(p1,p2,m)
∂m

6.2.1 Normal/Inferior

Depending on whether demand increases or decreases with
income, we call goods normal or inferior.

If demand increases when income increases, we say the
good is “Normal”.
If demand decreases when income increases, we say the
good is “Inferior”.

Examples:
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We have seen that the demand for x1 from the Cobb-Douglass
utility function u = x1x2 is x∗1 =

1
2m

p1
. This is a normal

good since this demand increase with income. Notice that
∂

(
1
2
m

p1

)
∂m = 1

2p1
> 0.

Suppose we found demand for some good was x1 = 10
mp1

.
This would be an inferior good since demand decreases with

m. Noice
∂
(

10
mp1

)
∂m = − 10

m2p1
< 0.

6.2.2 Income Offer Curve

The income offer curve is a plot of optimal bundles (x∗1, x
∗
2)

as income changes but prices remain fixed.

For example, suppose u (x1, x2) = x1x2 and prices are p1 =
2, p2 = 1. We get demands: x1 = 1

4m, x2 = 1
2m. Let’s pick

a few points for m and plot the optimal bundles.

m = 1
(

1
4 ,

1
2

)
m = 2

(
1
2 , 1
)

m = 3
(

3
4 ,

3
2

)
m = 4 (1, 2})
m = 5

(
5
4 ,

5
2

)
Plotting these, we see quickly they live on a straight line.
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Figure 6.1: Income offer curve for Cobb Douglass preference
example.

Notice how the income offer curve increases in both the x1

and the x2 direction as m increases. That is because both
goods are normal. What if one good was inferior (both can
not be inferior at the same time). We would get a graph
like this:
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Figure 6.2: Example of an income offer curve where x1 is
initially normal but becomes inferior as m grows.

6.2.3 Engle Curve

The Engle curve is the relationship between income and a
single good. Plotting m on the vertical axis against x1

or x2 on the horizontal axis. Suppose we had demand:
x1 = 1

4m. To plot this with m on the vertical axis, it helps
to isolate m. We get:

m = 4x1

When we put m on the vertical axis, really what we are
plotting is the amount of income a consumer would need to
have to demand some amount x1 of good 1.
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Figure 6.3: Engle curve for x1 = 1
4m.

This is a normal good because x1 increases as m increases.
What about an inferior good? This one is subtle. We might
think we could just make a graph where x1 decreases ev-
erywhere as m increases. But, this is impossible. For x1

to decreases, it has to have increased at some point. So,
this shows us that good cannot possibly be “always infe-
rior”. The normal/inferior nature of a good can depend on
income.

Here is an example where a good in normal for low income
and inferior for larger income:

58



Figure 6.4: Engle curve for a good that is normal for low
income and inferior for high income.

6.2.4 Example: Perfect Complements

Let’s work an example with perfect complements. Suppose
we have: U (x1, x2) = min {x1, x2} . p1 = 2, p2 = 1.

At the optimum, we have x1 = x2 (the no waste condition)
and 2x1 + 1x2 = m (the budget condition). Solving these
together gives us:

x1 =
m

3
, x2 =

m

3

Plotting the income offer curve:
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Figure 6.5: Income offer curve for min {x1, x2} with p1 = 2
and p2 = 1

Plotting the Engle curve for x1:
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Figure 6.6: Engle Curve of x1 for min {x1, x2} with p1 = 2
and p2 = 1

6.3 Changes in “Own” Price

The analysis of how demand for a good changes when the
price of that good changes is a common task in economics.

Most of the time, we expect demand to decrease when price
increases. We call such goods ordinary. Perhaps surpris-
ingly, nothing about our assumptions so far rule out the
opposite. Demand can increase when price increases. We
call such goods giffen.

Classifying goods:
When the price of a good goes up, and demand goes down,
we say the good is ordinary.
When the price of a good goes up, and demand goes up,
we say the good is giffen.
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Here is a diagram showing how a good might be giffen.
Notice that the price of good 1 increases from the green to
the blue budget lines. Yet, the demand on the greed budget
line is smaller than on the blue budget line.

Figure 6.7: Indifference curves and budget for a “giffen”
good. Note that as the price p1 increases from the green to
blue budget, the optimal amount of x1 increases.

As we will see later on, a giffen good must be infe-
rior. In fact, the was giffen goods arise is the following
way: As the price of the good increases, it lowers the con-
sumers effective income. This decrease in effective income
can pressure demand up enough that the total effect on de-
mand positive. Yeah... it’s weird, but that’s the beauty
of math. Counter-intuitive outcomes occur all the time in
formal models. This is not a bad thing. Investigating the
formal mechanisms that create these strange outcomes can
be just as informative as studying the more reasonable phe-
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nomenon we can produce.

6.3.1 Price Offer Curve

Like with changes in income, we have several ways of graph-
ing the way demand changes when a price changes. The
analogous graph to the income offer curve is the price offer
curve. To produce this graph, hold income and one of the
prices fixed, the price offer curve is the set of bundles x∗1, x∗2
that are optimal at each level of the other price.

Figure 6.8: Example of a price offer curve (blue). The price
offer curve plots the bundles that are optimal along each of
the budget lines (black) as p1 changes.
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6.3.2 Plotting the Demand Curve

The analogous graph to the engle curve is the demand
curve. As we have seen, the demand for a good is xi (p1, p2,m)
that is, the optimal amount that a consumer chooses given
the prices and income. However, when we talk about “plot-
ting” the demand curve of x1 we usually mean holding p2

and m fixed and plotting how the demand for x1 changes
as p1 changes. For this, we put p1 on the vertical axis and
x1 on the horizontal axis. When we do this, we are actually
plotting something called the inverse demand.

For example, suppose demand for x1 is:

x1 =
1
2 (10)

p1

To plot this with p1 on the vertical axis, we first solve for
p1. When we do this we get p1 = 5

x1
this is the inverse

demand. It is the price that would be responsible for the
consumer buying some amount x1 of the good. Plotting
this we get the “demand plot”.
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Figure 6.9: Plotting demand for x1 = 5
p1
.

6.4 Changes in “Other” Price

So far we have looked at what happens to a good when we
change income and it’s own price. We might also be inter-
ested in how demand changes for a good when the change
the price of another good. Like the other parameters, we
have two possibilities for classifying goods:

Classifying Goods
If the demand for a good goes down when the price of the
other good goes up, we say the goods are complements.
If the demand for a good goes up when the price of the
other good goes up, we say the goods are substitutes.
If demand for a good does not change when the price of
the other good goes up, we say the goods are neither
complements nor substitutes.
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6.4.1 Example: Perfect Complements

Suppose we have

u = min {x1, x2}

The marshallian demand is: x1 = m
p1+p2

and x2 = m
p1+p2

.
For both goods, as you increase the price of the other good,
the demand goes down. They are complements (hopefully
this is not a surprise). One way to see this is just to note
that both prices are in the denominator. Thus, as either
increases, demand goes down (this shows both goods are
also ordinary). Another way is to take a derivative. For
instance, to see that x1 is decreasing in p2:

∂
(

m
p1+p2

)
∂ (p2)

= − m

(p1 + p2) 2

Since m and (p1 + p2)
2 are always positive, − m

(p1+p2)2 < 0.
Thus, the derivative is negative, showing that x1 decreases
in p2. A similar analysis will show that x2 is decreasing in
p1.

6.4.2 Examples Perfect Substitutes

Suppose we have utility:

u = x1 + x2
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Demand is x1 = m
p1
x2 = 0 if p1 < p2 and x1 = 0 x2 = m

p2
if

p1 > p2.

This one is a litter trickier. Let’s look at how x2 changes
in p1. If p1 < p2, x2 = 0. If p1 increases enough so that
p1 > p2 the demand for x2 increases to m

p2
. So, as long as

the change in price p1 has any effect on the demand for p2

(it might not if it does not change which price is higher in
this example) then the goods are substitutes.

6.4.3 Examples Cobb Douglass

Suppose
u = x1x2

Demand is x1 =
1
2m

p1
and x2 =

1
2m

p2
. Neither good’s demand

depends on the price of the other good. They are neither
complements nor substitutes.

7 Slutsky Decomposition

In the previous section, we looked at how demand changes
when price changes. In this section, we dig a little deeper
into why demand changes when price changes. Intuitively,
there are two reason that a change in price can change de-
mand. Let’s look at them in the context of an increase in
price.
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Substitution Effect: When the price goes up, you might
substitute into buying alternatives, lowering demand.
Income Effect: When the price goes up, what you con-
tinue to buy is now more expensive. Effective income is
lower and demand decreases if the good is normal, and
increases if the good is inferior.

Notice that, the income effect could be either positive or
negative, depending on whether the good is normal or in-
ferior. On the other hand, the substitution effect is always
negative for an increase in price. We call this the law of
demand:

Law of Demand:
For a change in price of good i the substitution effect (on
good i) will always lead to a decrease or no change in
demand xi.

This leads to the first result for this section. I telegraphed it
earlier, but here it is. If a good is Giffen, a price increase
increases demand. However, a price increase will always
decrease demand due to substitution. So, in order to get
demand to decrease overall, the income effect must increase
demand enough to overcome the substitution effect. That is,
the good must be inferior.

This leads to three total possibilities for how a change in
price can change demand through these two effects:
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Ordinary/Normal- Both effects decrease demand.
Ordinary/Inferior- Substitution decreases demand (it al-
ways does) and income effect increases demand, but not
enough to overcome the decrease due to substitution.
Giffen/Inferior- Substitution decreases demand (it always
does) and income effect increases demand so much that it
overcomes the decrease due to substitution and increases
demand overall.

In the next section, we work through how to quantitatively
measure these effects.

7.1 The Slutsky Decomposition.

The Slutsky decomposition is best thought of as a thought
experiment. This thought experiment goes like this:

Suppose price of a good increases, we go from the budget:

p1x1 + p2x2 = m

To a new budget:

p
′

1x1 + p2x2 = m

The total effect is:

x∗1 (p1, p2,m)− x∗1
(
p
′

1, p2,m
)

To study substitution effect only, we need to know what the
consumer would choose if the price had changed, but their
demand could not change due to income. We need a way
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to to correct for the effect the price change has on effective
income. Let’s try this. Ask: how much income would they
need at the new prices to afford the old bundle? If we were
to give the consumer this extra income and then see what
they buy at the new prices whatever changes about demand
couldn’t be due to income. We corrected their income. Any
change can only be due to substitution.

To do this formally we calculate:

Compensating income: cost of the original bundle under
the new prices.

If we are analyzing a change in p1 this would be:

m̃ = p
′

1x
∗
1 (p1, p2,m) + p2x

∗
2 (p1, p2,m)

Now construct a new budget to asses the substitution effect.
Use the new prices, but give the consumer this compensated
income. The budget equation is: p

′

1x1 + p2x2 = m̃. What
does the consumer choose on this budget. This is denoted:
x∗1

(
p
′

1, p2, m̃
)

The substitution effect is the difference between what
they chose under the original budget and what they choose
under this budget with the new prices and compensated
income.

x∗1 (p1, p2,m)− x∗1
(
p
′

1, p2, m̃
)

Of course, since this difference takes care of the substitution
effect. The income effect is the remainder:
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x∗1

(
p
′

1, p2, m̃
)
− x∗1

(
p
′

1, p2,m
)

That is, the difference between what they choose on the
thought experiment budget (new prices, extra income) and
what they choose under the new prices with their actual
income.

7.2 Graphically Decomposing Demand

There are three budgets involved in the slusky decomposi-
tion. The original budget, shown in blue. The budget after
the price change, shown in green. The budget we use to
determine the substitution effect (shown in orange) which
has the new prices and an extra amount of income so that
the consumer can afford the old bundle at the new prices.
Notice how the orange budget intersects the blue budget
the the bundle the consumer demands under the prices be-
fore the price change. This is graphically showing that the
income has been compensated so the consumer can afford
that old bundle.

On each budget I have drawn the indifference curve through
the optimal bundle on that budget. Notice in each case the
indifference curve just touches the budget but does not pass
through it. I have also marked the demand for x1 from each
of those budgets on the x1 axis. x1 is the demand under
the original budget. x

′

1 is the demand under the new prices.
x
′′

1 is the demand under the new prices with compensated
income. The total effect is x1 − x

′

1. The substitution effect
is x1 − x

′′

1 . The total effect is the difference:
(
x1 − x

′

1

)
−(

x1 − x
′′

1

)
= x

′′

1−x
′

1. This is shown to the right of the plot.
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Figure 7.1: The Slutsky Decomposition for an Ordi-
nary/Normal Good.

Here is an example of decomposing changes in demand for
a consumer with perfect complements preferences. As you
might expect, with perfect complements, there is no substi-
tution effect. Have a look how the demand on the blue and
orange budgets below are identical! Thus, the substitution
effect is zero. The total effect is completely explained by
the income effect.
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Figure 7.2: The Slutsky decomposition for perfect comple-
ments. There is only substitution effect.

7.3 Why is the substitution effect always
negative?

I mentioned above that the substitution effect is always
negative without much commentary. It is worth a reading
through a short proof to convince yourself of this. You are
not responsible for this proof, but as usual, understanding
it might give you better insight into how demand works.

Below, I have drawn a diagram with the same color coding
as the previous two examples. The original budget is blue,
then price p1 increases to create the green budget. The or-
ange budget is the compensated budget we use to determine
the substitution effect.

The fact that substitution effect must be negative is equiv-
alent to the fact that, on the compensated budget, the con-
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sumer’s optimal bundle will always lie to the left of the
original bundle. Suppose it didn’t. Suppose the consumer
instead demanded more x1 on the compensated budget.
The fact that the price p1 is higher, and the consumer has
enough income to afford the old bundle means the what-
ever bundle they might demand to the right of the original,
it will have to have been strictly affordable under the old
budget. Inspect the graph to convince yourself of this. But
if that bundle was strictly affordable under the old budget
and wasn’t chosen, why would it be chosen now?

Figure 7.3: The substitution effect must be nega-
tive. Everything on the lower portion of the orange bud-
get (which determines the substituion effect) was available
under the original (blue) budget and was strictly afford-
able. Thus, the point chosen on the blue budget x∗ must
be strictly better than any of those points. Thus, no point
on the lower point of the orange budget can be chosen. This
implies demand must decrease due to substitution.
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7.4 Example Problem

Let’s work through a slutsky decomposition problem. Sup-
pose utility is:

u = x1x2

Demand for this consumer is: x∗1 =
1
2m

p1
, x∗2 =

1
2m

p2
.

Let’s pick some income and prices. Suppose prices are p1 =
1, p2 = 1, m = 20 and the price of good one increases
to p1 = 2. Demand before the price change is the bundle
(10, 10). After the price change, demand changes to (5, 10).
The demand for x1 has decrease by 5 units due to this
change in prices. How much is due to substitution? We
need to first calculate the compensating income. How much
would this consumer need to afford the bundle (10, 10) after
the price change. The cost of that bundle under the prices
p1 = 2, p2 = 1 is: 2 (10) + (10) = 30.

We now construct the new budget equation: 2x1 +x2 = 30.
What would the consumer demand under this budget? Us-
ing the demands above, we get the bundle:

(
15
2 , 15

)
. Notice,

the new demand for x1 is 15
2 . This is 5

2 higher than the orig-
inal bundle. This difference cannot be due to income effect
since we have given the consumer extra income to afford the
old bundle. Thus this 5

2 is due to the substitution effect.
The remainder of the 5 unit change in demand must be due
to income. That is 5 − 5

2 = 5
2 . Thus, for this example, the

income and substitution effect are both 5
2 .

75



8 From Income to Endowments

Until this point our consumers had income in terms of
money. m = $10 for instance. We did not model where
this income comes from. In economics, we call such a pa-
rameter exogenous. That means, it is determined outside
the model. This is fine for a lot of analysis. But it will not
work if we want to model a more cohesive economy where
income has to come from somewhere in the economy. We
would want income to be endogenous. That is, determined
within the model.

To take the first step towards endogenizing income, we will
now think of the consumers as having an endowment of
goods to start with. We denote the bundle a consumer
starts with as (ω1, ω2).

Those little letters are actually each a lowercase greek omega
rather than a w. But if you want to think of them as w,
that’s fine. The whole thing is made up anyway. In fact,
I’ll probably waver between ω and w in these notes since I
often forget to type “\omega”.

w1 is the endowment of good 1. w2 is the endowment of
good 2.

Let’s look at an example. Suppose we have an apple farmer
who grows apples but consumes apples and crusts., x1 is
apples. x2 is crusts. Endowment might be ω1 = 10, ω2 = 0.
This says, the apple farmer stats with 10 apples and zero
crusts.

We now construct a new budget equation for this consumer
using the following intuitive constraint: the cost of their
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chosen bundles must equal the value of their endowment.
Formally:

p1x1 + p2x2 = p1w1 + p2w2

For our apple farmer:

p1x1 + p2x2 = p110

Notice how income now reacts to changes in prices. If the
price of p1 goes up, income increases as well! Income is
endogenous to the model. The endowments are exogenous.

8.1 Gross Demand vs. Net Demand

We can re-write the above budget equation into another
useful form.

p1 (x1 − w1) + p2 (x2 − w2) = 0

Notice here we use x1−w1 and x2−w2. These are called the
net demands. In contrast, we call x1 and x2 the gross
demands. This form of the budget says the cost of the net
demand must be zero.

When xi−wi > 0 we say the consumer is a net demander
(buyer) of that good. When xi−wi < 0 we say they are a
net supplier (seller). Notice that the fact that the cost
of net demand must be zero implies that if a consumer is
a net demander of one good, they are a net supplier of the
other.
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Figure 8.1: Regions where a consumer is a net buyer/seller.

8.2 Drawing the Budget Line and Changes
to Price

Before, when income was exogenous, income did no react to
changes in price. Now however, a change in price changes
both the slope of the budget equation but also the income.
This changes how the budget line reacts to changes in price.

An easy way to get the changes right is to make sure that
the budget line always passes through the endowment point.
It has to. The endowment is always available to the con-
sumer. Look what happens when the price p1 changes in
the diagram below. Suppose the black line is the original
budget. When p1 increase, the slope must become steeper,
but the line must still pass through the endowment. We
end up with the blue budget. On the other hand, if p1

decreases, we get the orange budget.
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Figure 8.2: The budget line always passes through the en-
dowment (w1, w2) . If prices change, the slope changes, and
the budget pivots through this point. p1 increase (or p2

decrease) is shown in blue. p1 decrease (or p2 increase) is
shown in orange.

It is a good exercise to calculate the intercepts of the new
budget equation. The x1 intercept measure the amount of
x1 a consumer can afford if they only buy x1. Plug in 0 for
x2 into the budget and solve for x1:

p1x1 + p2 (0) = p1w1 + p2w2

x1 =
p1w1 + p2w2

p1
= w1 +

p2w2

p1

The x2 intercept can be found analogously;
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x2 =
p1w1 + p2w2

p2
=
p1w1

p2
+ w2

8.3 Price Changes and Net Buyers/Sellers

The way the budget equation reacts to changes in prices
means we can often say something interesting about what
happens to demand when prices change.

For a consumer who is a net buyer of a good, if the price
of that good decreases, they will remain a net buyer
and be strictly better off.
For a consumer who is a net seller of a good, if the price
of that good increases, they will remain a net seller and
be strictly better off.

I discussed the proof of these in class. The proof is closely
related to the proof of the fact that the substitution effect
must be negative. See if you can figure how why.

8.4 Example Problem

Let’s work an example of an apple farmer, who only con-
sumes apple pies and is endowed only with apples. En-
dowment is ω1 = 10, ω2 = 0. Prices are p1 = 1, p2 = 1.
Preferences are u = min

{
1
2x1, x2

}
.

Let’s set up the budget:

1x1 + 1x2 = 1 (10) + 1 (0)
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x1 + x2 = 10

Now fund the no waste condition:

1

2
x1 = x2

Combining this with the budget equation and solving for
x1 :

x1 +
1

2
x1 = 10

x1 =
20

3

Now plugging this back into the no waste condition gives:

x2 =
1

2
(x1) =

10

3

So the optimal bundle is
(

20
3 ,

10
3

)
.

9 Intertemporal Choice

In the last chapter, we learned about how we can endogenize
income by assuming that a consumer has an endowment of
goods. The goal of this chapter is to show that our model
so far is more flexible than it might first seem. We can
use what we have learned so far to build a very accept-
able model of borrowing and saving behavior. We call this
intertemporal (between times) choice.
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9.1 Bundles (Consumption Today, Consump-
tion Tomorrow)

To move from an endowment of goods to a model about
borrowing and saving, we first need to define the goods
we will use. Here, we will construct a two period model.
Our goods will be c1, c2− consumption on in period 1 and
consumption in period 2 respectively. A bundle is (c1, c2) .

Endowments in this model will represent income in pe-
riod 1- m1, and income in period 2- m2. As usual, the
endowment is always affordable.

9.2 Prices (Interest Rate)

We also need to define prices. Price in this model will al-
ways be measured in terms of consumption in some period.
The price of consumption in one period relative to another
will depend on r the interest rate the consumer can borrow
or save at.

If the consumer wants to borrow $1000 in period 1, they
pay back 1000 (1 + r) in period 2: 1000 + 1000 (r). The
cost of consumption in period 1 is (1 + r) times the cost of
consumption in period 2. Similarly if they save $1000 in
period 1, they get back: 1000 (1 + r) in period two.

9.3 Budget Constraint (Future Value Ver-
sion)

We can use the interest to builds the budget constraint.
Suppose the consumer saved mone in period 1. Consump-
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tion in period 2 is their income in period 2 (m2) plus how
much they saved in period 1: (m1 − c1) multiplied my 1+r.
This gives us the amount they can consume in period 2:

c2 = m2 + (1 + r) (m1 − c1)

Suppose instead they borrowed money in period 1. Con-
sumption in period 2 is income in period 2: m2 minus the
amount they have to pay back to cover their loan from pe-
riod 1. This is given by:

c2 = m2 − (1 + r) (c1 −m1) = m2 + (1 + r) (m1 − c1)

These are exactly the same equation. So we can use the
single equation c2 = m2 + (1 + r) (m1 − c1) to represent all
the bundles available to them regardless of whether they
borrow or save. We can also transform this equation to
make it look a little more like one we are used to:

c2 + (1 + r) c1 = m2 + (1 + r) (m1)

This looks a lot like the budget equations we used in the last
chapter. In this case, the prices are measured in terms of
consumption in period 2 since the consumption in period 2
has the price of 1. If the price of consumption in period one
is 1 then the price of consumption in period two is (1 + r).
Since prices are measured in terms of period two, we call
this the “future value” version of the budget equation.

We use “future value” here the same way it is used in ac-
counting. For instance, with this budget equation, we can
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easily calculate the future value of income. This tells us
how much c2 the consumer can consume if they only con-
sume c2. That is, it tells us the value of their stream of
income measured totally in terms of consumption in period
2 . Plugging in c1 = 0 we get:

c2 = m2 + (1 + r)m1

We can also divide both sides of the budget equation by
(1 + r) to transform the budget equation in to a present
value version where the price of c1 is 1 and so everything is
measured in terms of period one consumption. This is:

c1 +
c2

1 + r
= m1 +

m2

1 + r

We can use this to easily find the present value of in-
come. Plug in c2 = 0 and we get:

c1 = m1 +
m2

(1 + r)

For some intuition about this, notice if the consumer takes
out a loan of m2

(1+r) they will owe the bank m2 in the next
period which is exactly their income income. This is the
biggest loan they can take out in period 1.

9.4 Plotting the Budget Equation.

We are used to seeing budget equations like this:

p1x1 + p2x2 = p1w1 + p2w2
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Our now look like (either):

c1 +
c2

1 + r
= m1 +

m2

1 + r

(1 + r) c1 + c2 = (1 + r)m1 +m2

For both of these, the ratio of prices. In either case that
ratio is (1 + r), so the slope of the budget equation in
− (1 + r). This should make sense. Consumption in pe-
riod one is more expensive. To get one more dollar of con-
sumption in period 1 you have to give up (1 + r) dollars of
consumption in period 2.

So we have the slope, now we just need the intercepts. How-
ever, we already found these. The intercepts are always
“how much of _____ can I have if I only have ____”.
In this case the c1 intercept is the present value of income
and the c2 intercept is the future value of income.

On the budget equation, we should also plot the endow-
ment. Like in the previous chapter, any bundle to the right
of the endowment on the budget line is a bundle where the
consumer is “net buyer” of consumption in period one. In
this case, we call that person a borrower. If the consumer
chooses a point to the left of the endowment, they are a net
buyer of consumption in period two. We call them a saver
or lender. I have plotted an example budget equation be-
low.
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Figure 9.1: The budget equation for an intertemporal choice
problem.

9.5 Comparative Statics

As in the last chapter, there are some instances where we
know how a consumer will react to changes in prices.

A borrow, when the interest rate goes down, re-
mains a borrower and is strictly better off.
Because they are a “net buyer” of “good 1” and an interest
rate decrease is really a decrease in the price of consump-
tion in period 1, we can use the result of the last chapter
to show this.
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A saver, when the interest rate goes up, remains
a saver. And must be strictly better off.
A saver is really a net seller of c1. If the price of c1 goes
up because the interest rate increased, they will remain a
seller.

9.6 Example Problem

We can now work through an example problem. Once we
set up the budget equation, there really is not much differ-
ence between solving these problems and solving the ones
in the last chapter.

Suppose income is: m1 = 200.m2 = 600. The interest rate
is a (very high) r = 1

2 . Utility is U (c1, c2) = c1c2.

Write down the budget equation:

(1 + r) c1 + c2 = (1 + r)m1 +m2

Plugging in incomes and interest rate:

(1.5) c1 + c2 = (1.5) (200) + 600

Let’s calculate the present value of income. Set c2 = 0:

(1.5) c1 = (1.5) (200) + 600

c1 = 600

Let’s calculate the future value of income. Set c1 = 0:
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c2 = (1.5) (200) + 600

c2 = 900

Now let’s find the optimal consumption. The equal slope
condition is: MRS = − (1 + r). Plugging in for these:

−c2
c1

= −1.5

Rearranged, we get:

c2 = (1.5) c1

Plug this back into the budget equation to solve for c1:

1.5c1 + 1.5c1 = (1.5) 200 + 600

c1 =
900

3
= 300

Plugging c1 = 300 back into either the equal slope of budget
condition will give us c2:

c2 = 450

At this interest rate the consumer is a borrower since c1 =
300 > 200 = m1. We know that if the interest rate were to
decrease to 1

4 , the consumer will remain a borrower. Try to
confirm this by solving for the actual optimal bundle of c1
and c2 when r = 1

4 .
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10 Market Demand

We have now spent a lot of time studying individual con-
sumers. Since this is a microeconomics course, that should
not be too surprising. However, microeconomics is not only
about the choices of individual consumers, one area often
studied in microeconomics are choices of individual firms
and the small-scale interaction of firms.

Importantly, firms do not serve just one individual. Firms
sell to many individuals. So we cannot really start to study
firms until we have at least talked a little bit about how
we go from individual demands to the aggregated market
demands that firms actually care about. In the end a firm
really wants to know the total amount of stuff they can sell
at certain prices. That will depend on demand of many
consumers. In this chapter, we move from the demand of
an individual to the total demand in a market.

10.1 Adding Demand Curves

Suppose we have n consumers, each with some demand for
good 1 and some demand for good 2. When we denote a
demand we now have to indicate not only what good it is
for but also who’s demand it is. We do it this way:

Demand of consumer i for good j is written xji (p1, p2,mi).

With this notation, we can sum over consumers to get
the market or aggregate demand for a particular good. For
instance, the market demand for good 1 is:
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X1 (p1, p2,m1, ...,mn) =

n∑
i=1

x1
i (p1, p2,mi)

And the market demand for good 2 is:

X2 (p1, p2,m1, ...,mn) =

n∑
i=1

x2
i (p1, p2,mi)

Note how we are denoting market demands with capital
letters to keep them separate from individual demand which
use a lower case x.

10.2 Example Cobb Douglass Demand

Let’s look at an example of aggregating demand. Suppose
we have Cobb Douglass consumers all with the utility func-
tion:

ui
(
x1
i , x

2
i

)
=
(
x1
i

) (
x2
i

)
Note: the 1 and 2 superscripts are no exponents, but rather
the label for the good. The individual demand for consumer
i for each good is:

x1
i =

1
2mi

p1
, x2
i =

1
2mi

p2

Market demand for good 1 is the sum of the individual
demands:
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X1 =

n∑
i=1

(
x1
i

)
=

n∑
i=1

( 1
2mi

p1

)
Suppose p1 = 1 and m1 = 10, m2 = 20, m3 = 30.

X1 =

( 1
210

1

)
+

( 1
220

1

)
+

( 1
230

1

)
= 30

Notice that if we denote M as the sum of the individual in-
comes so thatM =

∑n
i=1mi, thenM is the total amount of

income in the economy. We could re-write the total demand
above in terms of M like this:

n∑
i=1

( 1
2mi

p1

)
=

1

2

1

p1

n∑
i=1

mi =
1
2M

p1

So in this case, the market demand for the good only de-
pends on the aggregate income. It does not matter how
income is distributed. Let’s look at another example.

Suppose p1 = 1 and m1 = 20, m2 = 20, m3 = 20. The
aggregate income is 60, just as it was in the other example
above.

X1 =

( 1
220

1

)
+

( 1
220

1

)
+

( 1
220

1

)
= 30

The demand is the same. This is a pretty nice feature.
In fact, if we just gave all the income to one person, we’d
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have something like m1 = 60,m2 = 0,m3 = 0. The de-
mand would still be 30. To determine market demand all
we have to do in this example is figure out what the ag-
gregate income is, then imagine giving that whole income
to one consumer and asking what that representative con-
sumer would choose. Whatever they would choose is the
same as the market demand with that aggregate income un-
der any distribution of incomes. This use of a representative
agent is very common in some macroeconomic models be-
cause it vastly simplifies some calculations. But when does
this condition hold?

It turns out, it always holds if consumers always have the
same homothetic preferences.

10.3 Homothetic Preferences.

for any t ≥ 0 :
% is homothetic if x % y implies tx % ty.
u is homothetic if u (x) ≥ u (y) implies u (tx) ≥
u (ty).
If u represents % then u is homothetic if and only if % is
homothetic.

For example, suppose (1, 2) % (2, 1) and preferences are ho-
mothetic. Then we know (2, 4) % (4, 2) since these bundles
are respective t = 2 times (1, 2) and (2, 1).

In the example in the last section, we saw that consumers
with the same cobb dougalss utility function have the rep-
resentative consumer property, and I told you that this is
because the utility function is homothetic. Let’s see that it
is true here:
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Suppose utility is:

u (x1, x2) = xα1x
β
2

Pick two bundles (x1, x2) , (x̃1, x̃2) such that u (x1, x2) ≥
u (x̃1, x̃2). Then:

xα1x
β
2 > x̃α1 x̃

β
2

Multiply (x1, x2) and (x̃1, x̃2) by t. To show preferences are
homothetic, we need to show that:

(tx1)
α

(tx2)
β
> (tx̃1)

α
(tx̃2)

β

Factor out the t from each variable:

tαtβ
(
xα1x

β
2

)
> tαtβ

(
x̃α1 x̃

β
2

)
Notice that tαtβ cancels from each side. We get:

(
xα1x

β
2

)
>
(
x̃α1 x̃

β
2

)
This is true by our initial asusmption. Thus, Cobb Douglass
is homothetic.
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10.4 Homotheticity via MRS

Showing a utility function is homothetic as we did in the
previous example can be tedious, but there is an easier way
to test if preferences are homothetic.

For a utility function of two goods where the MRS is well
defined, preferences are homothetic if and only if the MRS
depends only on the ratio of goods but not the amount of
either good.

Let’s try this for the Cobb Douglas example above. The
MRS is:

−
∂(xα1 x

β
2 )

∂x1

∂(xα1 x
β
2 )

∂x2

= −αx2

βx1

This only depends on the ratio of good (and the parameters
α and β). For instance, the MRS for (1, 1) is −αβ and the
MRS for (2, 2) is −αβ .

Here are some non-homothetic preferences:

u = x1 +
√
x2

Let’s check the MRS:

−
∂(x1+

√
x2)

∂x1

∂(x1+
√
x2)

∂x2

= − 2
√
x2
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This depends on the absolute level x2, not the ratio of x1

and x2. It is not homothetic.

The fact that the MRS is the same for the same ratio of
goods in a homothetic utility function implies something
nice about the indifference curves:

The indifference curves of a homothetic utility function
are parallel along a ray through the origin.

That is, draw any line emanating from the point (0, 0). At
every point on that ray, the slope of the indifference curve
at that point is exactly the same.

Another nice fact about homothetic prefrences is that:

Consumers with homothetic preferences will always have
linear Engle curves.

I’ll prove that to you in class.

10.5 Elasticity

Because we are now working with many different consumers,
who may have wildly different levels of demand for a good,
it is nice to have a way of comparing consumer demand that
does not depend on the levels of demand.

For example, suppose the price of a good changes from 1
to 2. Consumer 1’s demand changes from 100 to 50 and
consumer 2’s changes from 10 to 5. Their behavior in terms
of absolute changes in demand ∆xi

∆pi
is wildly different, but

their behavior in terms of percentage terms
∆xi
xi

∆pi
pi

is identical.
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Elasticity is simply a way of quantifying comparative statics
in unit-free percentage terms.

Let’s look at this for both consumers above:

∆xi
xi

∆pi
pi

=
100−50

100
1−2

1

= −1

2

∆xi
xi

∆pi
pi

=
10−5

10
1−2

1

= −1

2

10.6 Price Elasticity

In the example above, we used absolute percent changes

to compare the consumer demands:
∆xi
xi

∆pi
pi

. For very small

absolute changes, we can measure the same thing through
derivatives, change the ∆ to ∂ and we have it.

Price elasticity of demand is given by:

εi,i =
∂xi
xi
∂pi
pi

=
∂xi
∂pi

pi
xi

Price elasticity measures (roughly) the percent change in
demand of a good for a one percent increase in price of
that good.
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Cross-price elasticity is:

εi,j =
∂xi
xi
∂pj
pj

=
∂xi
∂pj

pj
xi

Cross price elasticity measures (roughly) the percent
change in demand of a good for a one percent increase
in price of some other good.

Here is an example. Suppose utility is u = x1x2. Demand
for good 1 is x1 =

1
2m

p1
.

Price Elasticity is:

ε1,1 =
∂
(

1
2m

p1

)
∂p1

p1
1
2m

p1

= −
( 1

2m

p2
1

)
p1
1
2m

p1

= −
( 1

2m

p2
1

)
p2

1
1
2m

= −1

This is what we call constant unit-elastic demand be-
cause the elasticity is always the same (constant) and is
always −1 (unit). In this case, we would say “a 1% increase
in price always leads to a 1% decrease in demand”.

97



If elasticity is less than −1 (For instance −2.) we say
demand is “Elastic”. A 1% increase in price leads to a
more than 1% decrease in demand.
If elasticity is more than −1 (For instance − 1

2 .) we say
demand is “Inelastic”. A 1% increase in price leads to a
less than 1% decrease in demand.

Can you think of some goods that have elastic demand?
Inelastic demand?

10.7 Cross-Price Elasticity:

We defined cross-price elasticity above, but let’s look at
some examples. Recall that the cross price-elasticity for
good 1 with respect to price 2 is:

ε1,2 =
∂ (x1)

∂p2

p2

x1

For the cobb-Douglass utility function we looked at above,
demand for good 1 is:

1
2m

p1
. Notice, this does not depend

on p2 at all. In fact:

ε1,2 =
∂
(

1
2m

p1

)
∂p2

p2

x1
= 0

Because demand for one good does not depend on the price
of another, the cross-price elasticities are zero for Cobb
Douglass.

Let’s try a less trivial one now. Suppose utility is: u =
min {x1, x2}. Optimal demand for good 1: x1 = m

p1+p2
.

This now depends on p2. The cross price elasticity is:
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ε1,2 =
∂
(

m
p1+p2

)
∂p2

p2
m

p1+p2

ε1,2 = − p2

p1 + p2

To interpret this, when price p2 increases by 1%, demand for
x1 goes down by p2

p1+p2
%. For example, suppose p1 = p2 =

1. Then ε1,2 = − 1
2 . If price of p2 goes up by 1%, demand

for x1 goes down by 1
2%. Think about why that would be

for this case of perfect complements at these prices.

10.8 Income Elasticity

There is another type of elasticity we can talk about as well.
Income elasticity. Roughly,

Income elasticity measures: the percent that demand
changes when we increase income by 1%.
The formula is: ηi = ∂xi

∂m
m
xi

Let’s have a look at our usual cobb douglass demand exam-
ple. Demand for good 1 is x1 =

1
2m

p1
. The income elasticity

is:

ηi =
∂
(

1
2m

pi

)
∂m

m
1
2m

pi
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=
1

2pi

m
1
2m

pi

=
1

2pi

2pi
1

ηi = 1

When income goes up by 1%, demand will go up by 1%.
In fact, this will hold for any cobb douglass utility function
and for either good:

Suppose u = xα1x
β
2 :

x1 =

α
α+β ∗m
p1

, x2 =

β
α+β ∗m
p2

η1 =
∂
( α
α+β ∗m
p1

)
∂m

m
α

α+β ∗m
p1

= 1

η2 =

∂

(
β

α+β ∗m
p2

)
∂m

m
β

α+β ∗m
p2

= 1

Let’s look at one where the income elasticity is not 1. Sup-
pose demand is

1
2m

2

p1
. Here we get:
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η =
∂
(

1
2m

2

p1

)
∂m

m(
1
2m

2

p1

) = 2

In this case, we have a constant income elasticity of
2 which means that if income increases by 1%, demand
increases by 2%.

Finally, let’s look at an example where the elasticity is not
constant. Suppose demand is log(m)

p1
:

η =
∂
(

log(m)
p1

)
∂m

m(
log(m)
p1

) =
1

log(m)

In this case, if income increases by 1%, demand increases
by 1

log(m)%, which depends on the income level itself.

11 Equilibrium

At this point in our study of microconomics, we have fo-
cused only on consumer choice behavior- working through
this topic from a very fundamental level. If you have fol-
lowed along, you can now start with a description of con-
sumers’ preferences and a budgets and work out those con-
sumers demands, then aggregate those demands into a mar-
ket or aggregate demands. You might think the next step is
to study the producers and work through their choices from
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the same fundamental level. We will do this, but first, it is
nice to take a step back and look at markets again, using a
little of what we have learned so far.

In studying two consumer choices, we have tended to look
at models with two goods. We need two goods to model
trade-offs and actually derive demands. However, when we
are ready to study markets themselves, as long as we have
those demands in-hand, we do not need to deal with two
markets at a time, we can zoom in on a market for a single
good. Studying one market at a time is called: Partial
Equilibrium. It is partial, because we know that changes in
the price of good in whatever market we study will demand
in other markets (as long as goods are either substitutes
or complements). When we study multiple markets at the
same time and consider these spillover effects, we call that
studying General Equilibrium. Let’s save that for the end
of the semester.

11.1 Market Demand/Supply

A market has two sides. The consumers demand the good,
the producers supply the good. The description of how
much each side respectively demands or supplies are given
by the demand/supply function:

Definitions:

Market demand Qd (p) (what is the total amount demanded
at price p).

Market supply Qs (p) (what is the total amount supplied at
price p).
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Inverse market demand: pd (Q) (at what price are Q
units demanded?)

Inverse market supply: ps (Q) (at what price areQ units
supplied?)

Example. Linear Demand. Suppose market Demand is
Qd = 1000 − p. Then, inverse market demand is p =
1000−Qd.

Example. Cobb Douglass. Suppose the consumers in a mar-
ket all have utility x1x2. They all demand

1
2mi
p1

units of x1.

In total they demand Qd =
1
2M

p where M =
∑n
i=1mi (the

aggregate income). The inverse demand is: p =
1
2M

Qd
.

11.2 What is an equilibrium?

An equilibrium in a market is defined as a price p∗ such
that supply equals demand. Formally, it is a p∗ such that
Qd (p∗) = Qs (p∗).

We tend to analyze markets at their equilibrium (in our
case there will only be one possible equilibrium). This is
because a market is at rest when the price reaches equilib-
rium. There is no pressure on prices to either increase or
decrease. This is a convenient way to study markets— the
same way that it’s easier for a dentist to clean your teeth if
you aren’t jogging.

To see why an economy is at rest at equilibrium, suppose
at some price p, supply exceeds demand:

Qs (p) > Qd (p)
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There are surplus units of the good, some firms did not
get to sell. A firm would rather sell their excess unit rather
than have it go to waste, even if that means selling at a
lower price than p. There are no consumers left who are
willing to buy at a price of p, but there are consumers will-
ing to buy at a price lower than p. Thus, the firm can offer
their unit for sale at a lower price, this will make them bet-
ter off and some consumer better off. However, this creates
downward pressure on prices as firms start to list their
units of the good at these lower prices.

Suppose demand exceeds supply:

Qd (p) > Qs (p)

In this case, there is a shortage. Some consumers are will-
ing to buy at a higher price and there are some firms willing
to sell at that higher price. There is upward pressure on
prices.

In either case, there is pressure for prices to move. At the
equilibrium price however, there is no consumer willing to
buy at a higher price, or no firm willing to sell at a lower
price.

11.3 Solving for an Equilibrium.

Solving for equilibrium prices is straight-forward. Simply
use the condition Qd (p∗) = Qs (p∗) and solve for the re-
sulting price.
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Example. Suppose demand is Qd = 500
p and supply is

Qs = 100p. Let’s set these equal and solve for p.

500

p
= 100p

p∗ =
√

5

This is the equilibrium price. To get equilibrium quantity,
plug into either supply or demand. We should get the same
thing:

Qs = 100
(√

5
)

Qd =
1
21000
√

5
=

500√
5

= 100
5√
5

= 100
√

5

This is the equilibrium quantity:

Q∗ = 100
√

5

11.4 Fixed Supply

We have not talked at all about how we would actually
derive market supply. In the problem above, we had Qs =
100p. Where would a market supply like this actually come
from? We will see that in the next few chapters.

However, there are some types of supply that are easy to
understand without doing anything formal. The simplest of
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these is fixed supply. With fixed supply, the Qs is constant
for any price. The inverse supply curve (the thing we plot
on the “equilibrium graph” is a vertical line). This would
be the case, for instance, with concert tickets. The size of
the venue is fixed regardless of the price of tickets.

As an example, suppose there was a fixed supply of 1000
and demand is Qd = 500

p . The equilibrium price is whatever
price will get consumers to demand 1000. In this case, that
p∗ = 1

2 .

11.5 Effect of a Tax

Once we can solve for equilibrium, we might want to analyze
how different types of policies affect an market. The key one
we will study in this course is a tax.

Suppose the government imposes a tax of t per unit of good.
In this case, we should think of the price in the market p as
the “sticker price” of the good. p is the price firms receive
when the good is purchased, but consumers have to pay
p + t, and the t goes to the government. In this sense,
while p is the relevant price for the firms supply function,
p+ t is now the relevant price for consumers. That is what
they actually have to pay2. This gives us a new equilibrium
condition:

Qs (p) = Qd (p+ t)

2We could alternatively think of p as the price consumers actually
pay (this would be the case when tax is included in the posted price).
Then the firm gets p− t. It turns out, these will be exactly the same.
Since the “sticker price” is sort of what we are used to when we go to
the store, I will use that for the examples.
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Example.

Suppose demand is Qd = 300 − 50p and supply is Qs =
100p. Let’s first solve for the equilibrium without a tax.
Set Qs = Qd:

100p = 300− 50p

This gives us:

p∗ = 2

q∗ = 200

Now, suppose the government adds a tax of t = 1. Con-
sumers will pay p + 1 since they pay the “sticker price” p
plus the tax t = 1. In equilibrium, demand still needs to
equal supply. Let’s set these equal keeping in mind p+ 1 is
now the relevant price for consumers.

300− 50 (p+ 1) = 100p

p∗ =
5

3

In this case, in equilibrium, suppliers get p = 5
3 per unit

and consumers pay p+ t = 5
3 + 1 = 8

3 per unit. To get the
market quantity, plug p = 5

3 back into the supply function:

Qs = 100

(
5

3

)
=

500

3
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Let’s check that consumers actually demand 500
3 . Plugging

8
3 into the demand function:

Qd = 300− 50

(
8

3

)
= 300− 400

3
=

900− 400

3
=

500

3

Notice, the effect of the tax is that the new equilibrium
has a lower quantity. Consumers pay more then they used
to and suppliers receive less than they used to. Both are
worse off. How should we quantify “worse off” though? To
do this, we use a concept called surplus.

11.6 Surplus

Consumer surplus is a measure of welfare that tells us
how much “better-off” consumers are because the market
sells them some quantity q of a good at price p.

To motivate how we measure surplus, think of the height of
the inverse demand function at a point as being the price
some consumer is willing to pay for a unit of that good. The
difference between that height and the price is the difference
between what they would pay and what they have to pay.
That difference is a measure of that consumers surplus- how
happy the are to pay less than they are willing to.

“Summing” over all the consumers who actually buy the
good gives that area below the inverse demand curve and
above price. This is effectively adding up all the surplus
of the consumers who buy the good. The same argument
motivates the area above the inverse demand and below
price as being the producer surplus. The inverse supply

108



represents the price some firm would be willing to take to
sell a unit of the good. The difference between price and
that willingness is their surplus.

In summary, consumer surplus is the area below the in-
verse demand curve but above price from 0 to the equi-
librium quantity q∗. Analogously, the producer surplus
is the area above the inverse supply curve but below price
from 0 to q∗.

It is useful to draw the inverse supply and demand curves to
calculate these areas. I have plotted this below. If demand
and supply are linear, we can calculate them without using
an integral since the area is just a triangle. In the case of
the example above, we had demand is Qd = 300− 50p and
supply is Qs = 100p. Thus inverse demand is p = 6 − q

50
and inverse supply is p = q

100 . Equilibrium (without a tax)
price was p∗ = 2 and quantity was q∗ = 200. Notice that the
inverse demand has a intercept at 6. Thus, the area of con-
sumer surplus is a triangle with points (0, 2) , (0, 6) , (2, 200).
This is a triangle with base of 200 and a height of 4. The
area is:

1

2
(4 ∗ 200) = 400

The producer surplus is a triangle with points (0, 0) , (2, 0) , (2, 200) .
This is a triangle with base of 200 and height 2. The area
of consumer surplus is:

1

2
(2 ∗ 200) = 200
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Total welfare is the sum of consumer and producer surplus.
In this case it is 600.

z

Figure 11.1: Calculating Consumer and Producer Surplus

11.7 Pareto Efficiency

Look at the equilibrium graph for the last problem. Start
at equilibrium. Could we make any firm and consumer hap-
pier at the same time? Imagine we were to lower quantity.
In this case, we move to the left of the equilibrium point.
The inverse demand is above the inverse supply. There was
previously some consumer buying the good at a price be-
low their willingness to pay and some firm selling at a price
higher than their willingness to pay. Both this consumer
and this firm were happy having transacted, but now we
removed that transaction. Thus, reducing quantity from
equilibrium does not make anyone better off.
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Let’s try moving to the right of equilibrium. We have to
increase quantity above the equilibrium level. But, to the
right of equilibrium, inverse demand is below inverse supply.
Thus, to sell additional units, it has to be at some price that
is either above what a consumer is willing to spend or below
the price some firm is willing to accept. To sell more than
the equilibrium quantity, we have to make someone worse
off.

In fact, equilibrium is the only point where we can not
make someone better off without making someone
else worse off. This condition is called pareto efficiency.
The equilibrium is the only pareto efficient point.

11.8 Deadweight Loss

Above, we discussed the notion of Pareto efficiency. Dead-
weight loss is a measure related to the loss of efficiency due
to a market being out-of-equilibrium. It is the measured by
the difference in total surplus from some out-of-equilibrium
point to the equilibrium point. For instance, from a pre-
vious problem, we calculated the equilibrium under a tax
of size 1. In equilibrium, the total surplus was 600. Let’s
calculate it under the tax. I have plotted the equilibrium
with tax t = 1 below.
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Figure 11.2: Calculating Surplus For Previous Example

The consumer surplus under the tax:

(
6− 8

3

)
500
3

2
=

2500

9
= 277.778

The producer surplus under the tax:

(
5
3

)
500
3

2
=

1250

9
= 138.889

When there is no tax, the total surplus is the sum of pro-
ducer and consumer surplus. But with a tax, the tax rev-
enue can be considered surplus as well. It is sort of the
governments surplus. It will always be the tax t times the
quantity: t (q) . In this case, the government revenue under
the tax is:
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1

(
500

3

)
= 166.667

The total surplus under the tax is:

2500

9
+

1250

9
+

500

3.0
= 583.333

Compare this to the original surplus which was 600. The
dead-weight loss is the difference.

600− 583.333 = 16.667

We can also find this by the area of the missing triangle in
the chart above:

(
8
3 −

5
3

) (
200− 500

3

)
2

= 16.6667

11.9 Tax Burden

Notice how the tax in our problem above lowered the sur-
plus of consumers and producers. After a tax is imposed,
consumers will pay more and producers will receive less
than they did without the tax. Sometimes, a tax has a big-
ger impact on consumer welfare and sometimes on producer
welfare. Calculating tax burden or tax incidence is the
process of calculating who ends up “paying” for the tax.
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From the previous problem, after the tax is imposed, con-
sumers pay 8

3 . They paid only 2 before the tax. We say
that the burden on consumers is 8

3 − 2 = 2
3 .

Producers used to get 2 per unit, but after the tax they
only get 5

3 . The burden of the tax on producers is 1
3 .

Notice that the burden on consumers plus the burden on
producers adds to 1, the size of the tax. This will always
be the case. This also allows us to calculate the proportion
of burden. Just divide the burden on each size by the size
of the tax.

In this case the consumers bear 66.7% of the tax. Producers
bear 33.3% of the tax.

In this case, the consumers bear a little more of the tax than
producers. This relative ratio of burden is governed by the
relative elasticities of supply and demand. If demand is
relative elastic and supply is relatively inelastic, then most
of burden will be on producers. This is because, if demand
is elastic, suppliers can’t “pass on” much of the tax since it
will lower quantity demanded too much. When demand is
relatively inelastic compared to supply, most of the burden
of the tax will be on the consumers. This is because the
suppliers can pass on most of the tax to consumers without
having a significant decrease in quantity demanded.

12 Technology

In this chapter, we start our study of the production side of
an economy. Once we build up a little foundation, produc-
ers are going to behave a lot like consumers– just sort of in
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reverse. Consumers maximize utility given a fixed amount
they can spend, producers minimize the amount they spend
to produce some fixed amount of output. In a few chapters,
we will see how these two problems are ultimately quite
closely related.

To start, we need to represent what a producer can do. We
do this by defining their technology. At very general level
we could allow producers to use different kids of inputs,
produce different kinds of outputs, maybe produce some
kind of intermediate output that they then use to produce
other output, and so on. By as with consumers, we can get
pretty far using the simplest interesting model we can come
up with. In this case, that will consist of a technology made
up of two kinds of inputs x1, x2 and and a single output y.
For instance, x1 and x2 might be apples and crusts and y
would be pies.

Defining the technology is about describing how the inputs
turn into output. We do this through production functions.

12.1 Production Functions

A production function is a mapping from amounts of in-
puts, in our case an ordered pairs of amounts of both inputs
(x1, x2), into an amount of output y. Formally, we would
define it this way. f : R2

+ → R+ that is, f is a function that
maps every pair of two non-negative real numbers (the in-
put amounts) into a non-negative real number representing
the output amount.

Here’s an example. Suppose we have a pie producer that
uses 1 crust and 2 apples to make each pie. Some points on
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the production function are f (1, 2) = 1, f (2, 4) = 2, f (3, 6) =
3... We can represent the production function more gener-
ally as: f (x1, x2) = min

{
x1,

1
2x2

}
.

Notice that this looks a lot like a utility function. In fact,
we used a similar example to motivate the perfect comple-
ments utility function. One difference between a production
function and a utility function is that the numbers matter.
We can’t take transformations of this function, because our
production function represents something real. A utility
function is just a way of representing ordinal preferences.
For instance, if we were to multiply the production func-
tion above by 2, we would get a technology that only needs
1
2 crust and 1 apple to make a pie. That’s not the same
technology.

When we are given a production function, that’s the one
we are stuck with. No transformations allowed.

12.2 Isoquants

Like utility functions, we can use the “contours” of the pro-
duction function to understand its shape. For consumers
we had indifference curves. For producers we have: Iso-
quants– combinations of input that give you the same
amount of output.

For instance, in our example above the input bundles (1, 2) , (1, 3) , (1, 4) , (2, 2) , (3, 2) ...
all give 2 pie. They are on the same isoquant.

The isoquants can be graphs with all the same techniques
you used to graph indifference curves for consumers. Here
are some examples of some common technologies and their
associated isoquants.
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12.3 Example - Fixed Proportions/Perfect
Complements

Fixed proportions / perfect complements production works
just like perfect complements utility. The inputs are used in
a certain proportion and extra of one of the two inputs does
not contribute to additional production. These have the
functional formmin {ax1, bx2}. The isoquants are L-shapes
with the kinks following the line bx2 = ax1 or more famil-
iarly x2 = a

bx1 that is, a line through the origin with slope
b
a . For the case looked at above f (x1, x2) = min

{
x1,

1
2x2

}
,

here are the isoquants.

Figure 12.1: Isoquants for fixed-proportion technology.

12.4 Example - Perfect Substitutes

Perfect substitutes represent a technology where the in-
puts are interchangeable. For instance, maybe there are
two types of tools you can use to make the output. The
production functions have the functional form f (x1, x2) =
ax1 + bx2. The isoquants are straight lines with slope −ab .
To see this, take the production function and ask what bun-
dle of inputs produce output y? We get y = ax1 + bx2 now
solve for x2 to get x2 = y

b −
a
bx1– a line with slope −ab .

For instance, let’s look f (x1, x2) = 2x1 + x2. I have drawn
some of the isoquants below:
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Figure 12.2: Isoquants for perfect substitutes technology.

12.5 Marginal Products

For consumers, we talked a lot about the ratio of partial
derivatives, but did not make much of the partial derivatives
themselves which are called the marginal utilities for con-
sumers. This is because, the actually of the marginal util-
ities are meaningless for consumers since the actual value
of the utility function does not matter. For producers how-
ever, the actual value of the production function is meaningful–
it is measured in units of output. So here, the partial deriva-
tives are meaningful and we call these the marginal prod-

118



ucts. The marginal product of an input measures how
much production will increase if that input is increased a
small amount.

Marginal product for good i is This is the partial derivative
of the production function with respect to input xi.

MPi =
∂f (x1, x2)

∂xi

Example f (x1, x2) = 2x1 + x2

MP1 = 2,MP2 = 1

Example f (x1, x2) = (x1 + x2)
1
2 . (By the way, this produc-

tion is called the CES production function. CES stands for
Constant Elasticity of Substitution. Don’t worry too much
about what elasticity of substitution is just yet.

MP1 =
∂
(

(x1 + x2)
1
2

)
∂x1

=
1

2
(x1 + x2)

− 1
2

MP2 =
1

2
(x1 + x2)

− 1
2

Example f (x1, x2) = x
1
2
1 x

1
2
2 (Cobb Douglass Production)

MP1 =
∂
(
x

1
2
1 x

1
2
2

)
∂x1

=
1

2
x

1
2−1
1 x

1
2
2 =

1

2
x
− 1

2
1 x

1
2
2 =

1

2

x
1
2
2

x
1
2
1

=

√
x2

2
√
x1

MP2 =

√
x1

2
√
x2
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12.6 Diminishing Marginal Product

Diminishing marginal product is the idea that if you in-
crease one of the inputs while holding the other input fixed,
the extra output you become smaller and smaller. That is,
each input becomes less productive as you increase only
that input.

Diminishing marginal product requires that the derivative
of the marginal product is negative. Since the marginal
product is also a derivative, this is equivalent to the second
derivative of the production function being negative.

∂ (MPi)

∂xi
=
∂f (x1, x2)

∂xi∂xi
< 0

Let’s take a look at the Cobb Douglass example. It has
negative marginal products. Let’s check it for input 1.

MP1 =

√
x2

2
√
x1

∂
( √

x2

2
√
x1

)
∂x1

= −
√
x2

4x
3/2
1

< 0

The CES production function f (x1, x2) = (x1 + x2)
1
2 also

has decreasing marginal product. The marginal product for
input 1 is:

MP1 =
∂
(

(x1 + x2)
1
2

)
∂x1

=
1

2
(x1 + x2)

− 1
2 =

1

2

1√
x1 + x2
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By inspection, this decreases as x1 increases since x1 only
appears in the denominator. We can also check the deriva-
tive formally:

∂
(

1
2

1√
x1+x2

)
∂x1

= − 1

4 (x1 + x2) 3/2

As one final example, let’s try the: f (x1, x2) = x2
1x

2
2.

Marginal product is:

∂
(
x2

1x
2
2

)
∂x1

= 2x1x
2
2

The derivative of marginal product is:

∂
(
2x1x

2
2

)
∂x1

= 2x2
2 > 0

This has increasing marginal product since the marginal
product of x1 is increasing with x1.

12.7 Technical Rate of Substitution

The slope of the isoquants will be important. The inter-
pretation of will be that the slope of the isoquant measures
how much of input x2 you can give up if you add 1 unit
of x1 (so that you continue producing the same amount of
output).
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This slope is given by the Technical Rate of Substi-
tution which is the ratio of the marginal products. It is
analogous to the MRS for consumers.

TRS = −
∂f(x1,x2)

∂x1

∂f(x1,x2)
∂x2

= −MP1

MP2

Notice how, like the MRS, this is measuring tradeoffs. In
this case the tradeoff a firm is willing to make between
inputs. Eventually it will play a key role in finding optimal
input bundles.

12.8 Returns to Scale

Another type of analysis we can do on the shape of the
production function besides looking at the marginal prod-
ucts is to look at the returns to scale. Notice that marginal
product was about the shape of the production function
as a single input is increased. The idea of returns to sale
is about asking what happens to output when we increase
both inputs. Specifically, we might ask questions like “if
we doubles both inputs would output double? less than
double? more than double?”

Let’s look at the pie baking production function in the ex-
ample above with f (x1, x2) = min

{
x1,

1
2x2

}
.

1 crust, 2 apples make 1 pie:

f (1, 2) = 1
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Double the input now using 2 crusts, 4 apples. This makes
2 pies.

f (2, 4) = 2

Doubling the inputs, exactly doubled the output. In fact,
this is true generally for the function. We can show it for-
mally this way:

f (x1, x2) = min

{
x1,

1

2
x2

}

f (2x1, 2x2) = min

{
(2)x1, (2)

1

2
x2

}
= 2min

{
x1,

1

2
x2

}
We call this linear returns to scale. More abstractly, a
production function has linear returns to scale if for any
t > 1

f (tx1, tx2) = tf (x1, x1)

If on the other hand, doubling the inputs less than dou-
bled the outputs, we would say the production function
has decreasing returns to scale. Formally a production
function will have this property if for any t > 1:

f (tx1, tx2) < tf (x1, x1)

Finally, increasing returns to scale requires that dou-
bling the inputs more than doubles the outputs or more
generally that for any t > 1:
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f (tx1, tx2) > tf (x1, x1)

Take for example the CES production function: f (x1, x2) =

(x1 + x2)
1
2 . Multiply both inputs by t:

f (tx1, tx2) = (tx1 + tx2)
1
2

How does this compare to multiplying the output by t?
That is t (x1 + x2)

1
2 ?

f (tx1, tx2) =
√
t (x1 + x2)

1
2

Notice that for any t > 1:

√
t (x1 + x2)

1
2 < t (x1 + x2)

1
2

Thus, multiplying inputs by t less than increases output by
t. This has decreasing returns to scale.

13 Profit Maximization / Cost Min-
imization

Now that we have established a way or representing the
technology available to a form, we can look at the opti-
mization problem facing a firm. Of course, an optimization
problem needs a well defined objective. For consumers, that
is the maximization of utility (or more formally, finding a
“best” bundle according to % from the budget set). For
firms, we will assume that they attempt to maximize profit.
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13.1 Profit Maximization

Let p the price of output. Since the amount produced is
given by the production function f (x1, x2), we can write
the firms revenue as pf (x1, x2).

Cost is simply the cost of the chosen inputs. Let wi be the
input cost of input i. Then, cost can be written w1x1+w2x2.

Putting these together gives up the profit function as a
function of the input bundle (x1, x2):

π (x1, x2) = pf (x1, x2)− (w1x1 + w2x2)

Caveat: The assumption that p is fixed no matter how
much output the firm produces is not realistic in most mar-
kets. This is called the price taking assumption. We will
relax this later.

13.2 Short-Run Profit Maximization

In economics we often distinguish between the “short-run”
and “long-run” profit maximization. The distinction is that
in the short run, some inputs are fixed. For instance, in
the short run, the firm might be stuck using a certain size
of factory. In the long run, they can move to a different
factory, but for now, it is fixed.

Suppose x2 is fixed at level x̄2, then profit is only a function
of x1.

π (x1, x̄2) = pf (x1, x̄2)− w1x1 − w2x̄2
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In this case profit maximization only involves choosing the
optimal level of the variable input x1.

13.3 Example

Suppose f (x1, x2) = x
1
2
1 x

1
2
2 but x2 is fixed at x2 = 10. Price

of output is p = 100. w1 = 1, w2 = 1.

Plugging in x2 = 10, the short-run production function is
given by:

f (x1, 10) = x
1
2
1 (10)

1
2 =
√

10x
1
2
1

The short-run profit function is then:

π (x1, 10) = 100
√

10x
1
2
1 − (x1 + 10)

Maximizing this is a simple one-dimensional optimization
problem. We need to look for a point where the slope is
zero. Since this is a nice smooth function, the slope will
have to be zero at the maximum.

∂
(

100
√

10x
1
2
1 − (x1 + 10)

)
∂x1

=
50
√

10
√
x1
− 1

Setting this to zero gives the first-order condition:

50
√

10
√
x1
− 1 = 0
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Solving this for x1,we get the profit maximizing level of x1:

x∗1 = 25000

What is the maximum profit the firm can earn in the short
run? Plug the optimal x1 into the short run profit function:

π (x1, 10) = 100
√

10.0
√

25000− (25000 + 10) = 24990

13.4 Long-Run Profit Maximization Exam-
ple

In the long run, every input can be changed. We have to
find the optimal level of both x1 and x2. Suppose f (x1, x2) =

x
1
3
1 x

1
3
2 . Price of output is p = 100. w1 = 1, w2 = 1.

As we discussed in our class on technology, when the pro-
duction function has increasing returns or constant returns
to scale, there might not be a profit maximizing level of
inputs. Fortunately, this one is decreasing returns to scale.
For any t > 1 we have:

f (tx1, tx2) =
(

(tx1)
1
3 (tx2)

1
3

)
=
(
t

1
3x

1
3
1 t

1
3x

1
3
2

)
=

= t
2
3

(
x

1
3
1 x

1
3
2

)
= t

2
3 f (x1, x2) < tf (x1, x2)

So, let’s try the long-run profit maximization. We want to
maximize:
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π (x1, x2) = px
1
3
1 x

1
3
2 − (w1x1 + w2x2)

Imagine the profit function being a mountain. You can
move in two directions. North-south and east-west. Imag-
ine you were at a point where the mountains slope was
non-zero in one of these directions. Then you could move
in that direction and get to a higher point on the mountain.
Both of these slopes have to be zero for you to possible be
at the peak of the mountain. The same goes for maximizing
any function, the partial derivatives of that function have
to both be zero at the optimal value. For profit, we have:

∂π (x1, x2)

∂x1
= 0,

∂π (x1, x2)

∂x2
= 0

To reinforce this. Suppose either of these is non-zero. First,
suppose ∂π(x1,x2)

∂xi
> 0. If you increase xi profit will go up.

If on the other hand we have ∂π(x1,x2)
∂xi

< 0, decreasing xi
profit will go up.

Let’s suppose now the price of output is p = 100. w1 = 1,
w2 = 1. Plugging these into our example above, we get:

Maxx1x2
100x

1
3
1 x

1
3
2 − (x1 + x2)

Let’s fund the partial derivatives in both variables:

∂
(

100x
1
3
1 x

1
3
2 − (x1 + x2)

)
∂x1

=
3
√
x2

3x
2/3
1

− 1
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∂
(
x

1
3
1 x

1
3
2 − (x1 + x2)

)
∂x2

=
3
√
x1

3x
2/3
2

− 1

This gives us these two first order conditions:

100
3
√
x2

3x
2/3
1

− 1 = 0, 100
3
√
x1

3x
2/3
2

− 1 = 0

To solve for the profit max, we need to solve these two equa-
tions for the two unknowns x1, x2. That’s not so easy, so
we might want to use a calculator for help. I’ll use mathe-
matica. Here’s the command you would run for that:

Solve[{100
3
√
x2

3x
2/3
1

− 1 == 0, 100
3
√
x1

3x
2/3
2

− 1 == 0}, {x1, x2}]

There is only one solution:

x1 =
1000000

27
, x2 =

1000000

27

13.5 Example- Constant Returns to Scale

Suppose for this example we have the production function
f (x1, x2) = x

1
2
1 x

1
2
2 . Price of output is p = 100. w1 = 1,

w2 = 1.
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Profit is given by: π (x1, x2) = 100x
1
2
1 x

1
2
2 − (x1 + x2). Let’s

find the first order conditions:

∂
(

100x
1
2
1 x

1
2
2 − (x1 + x2)

)
∂x1

= 100

√
x2

2
√
x1
− 1

∂
(

100x
1
2
1 x

1
2
2 − (x1 + x2)

)
∂x2

= 100

√
x1

2
√
x2
− 1

Set these equal to zero and rearrange:

50
√
x1 =

√
x2, 50

√
x2 =

√
x1

Square both sides of both equations:

2500x2 = x1, 2500x1 = x2

The only solution to this is x1 = x2 = 0. Something weird
is going on here. Why would the optimal level be zero?
It isn’t. x1 = x2 = 0 is actually a profit minimizing
input choice. It turns out that there is no profit maximizing
solution. The firm can always increase profit by increasing
production. This will be much more clear when we take a
different approach to the problem: cost minimization.
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13.6 Cost Minimization

Profit maximization really involves solving two problems
at once: finding the optimal amount of output to produce
and finding the cheapest way of producing that output. By
doing this all at once, we can lose some of the the intuition
about what we are doing. However, it is possible to break
this problem up into two steps.

1. Calculate the cheapest way to produce any level of out-
put y.

2. Calculate the most profitable y.

To formalize step 1, we really want to solve the problem:

Minx1,x2w1x1 + w2x2 subject to f (x1, x2) = y.

In words, the constraint f (x1, x2) = y is: “among all the
pairs of x1 and x2 that produce y” and theMinx1,x2

w1x1 +
w2x2 is “find the cheapest (x1, x2) pair”. Notice that con-
straint is identical to saying “from the pairs (x1, x2) on the
y isoquant. That is, our constraint is an isoquant. We want
to find the cheapest bundle. One way to represent the cost
of bundles is to draw isocost curves. These are sets of
(x1, x2) that all cost the same to use. Effectively, they look
like a bunch of budget lines. In the figure below, I have
drawn the isoquant constraint in black and a bunch of iso-
cost curves in red. Notice that the bundle that is only the
lowest isocost curve that is also on the isoquant is the bun-
dle marked in red. It occurs at a point where the isocost is
tangent to the isoquant. This is almost like the consumer
problem in reverse.

Of course, since the slope of the isoquant measures the
tradeoff the firm can make between x1 and x2 to keep pro-
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ducing the same amount of output and the slope of the
isocost represents how the firm can tradeoff between x1

and x2 to continue incurring the same cost, if the slopes
aren’t equal, then the firm can find some way of trading
off between x1 and x2 such that they will produce the same
amount of output at the same cost. The intuition for this is
identical to the intuition for why the slopes of the indiffer-
ence curve and budget need to be the same for a consumer
(at least on the interior where some of both goods are being
consumed).

Figure 13.1: Cost minimization requires finding the lowest
isocost curve on the fixed isoquant.
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Since we need to look for points where the curves are tan-
gent, we can use an optimal condition (equal slopes condi-
tion) just like we used for consumers. Here, it looks like
this:

TRS = −w1

w2

This condition (if it exists and can be satisfied), combined
with the constraint f (x1, x2) = y, will provide a cost min-
imizing bundle or more specifically, what we call the condi-
tional factor demands x∗1 (w1, w2, y) , x∗2 (w1, w2, y). These
tell us how much x1 and x2 to use to produce y at the prices
w1 and w2. Plugging the conditional factor demands back
into the function w1x1 +w2x2 provides the cost function
c (y) = w1x

∗
1 (w1, w2, y) + w2x

∗
2 (w1, w2, y) which gives the

cheapest way of producing y at the prices w1 and w2. Note
that while the cost function c (y) is a function of the input
prices w1 and w2 as well, I tend to drop them from the func-
tional notation and just write c (y) instead of c (w1, w2, y).

13.7 Example- Minimizing Cost for a Cobb
Douglass Production Function

Minimize the cost of producing y units of output with pro-
duction function f (x1, x2) =x

1
4
1 x

1
4
2 .

The TRS is:
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TRS = −

∂

(
x

1
4
1 x

1
4
2

)
∂x1

∂

(
x

1
4
1 x

1
4
2

)
∂x2

= −x2

x1

Equal-slope condition:

−x2

x1
= −w1

w2

Solving this condition for x1:

x1 =
x2w2

w1

Instead of plugging this into a budget equation like we
would for the consumer utility maximization, we need to
plug it into the producer’s constraint– the production con-
straint: x

1
4
1 x

1
4
2 = y. Plugging this is gives us:

(
x2w2

w1

) 1
4

x
1
4
2 = y

Solve for x2 to get conditional factor demand for x2:

x2 = y2

(
w1

w2

) 1
2

Plug this back into the equal slope condition above to get
x1:
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x1 = y2

(
w2

w1

) 1
2

To calculate the cost function (what is the cheapest way to
produce y): plug these conditional factor demands into the
cost equation:

c (y) = w1

(
y2

(
w2

w1

) 1
2

)
+ w2

(
y2

(
w1

w2

) 1
2

)
= 2w

1
2
1 w

1
2
2 y

2

13.8 Profit Maximization Through Cost Min-
imization

Once we have the cost function, we know the cheapest way
of producing any amount of output y. Now, if we want to
maximize profit, we have already done the harder of the
two parts (figuring out the cheapest way to produce). We
are left with a relatively easy profit maximization problem.
To see this, replace the cost w1x1 + w2x2 with c (y). Now
we have written the profit function completely in terms of
y. And, we know whatever y we choose, c (y) will already
represent the cheapest way of producing that amount:

π (y) = py − c (y)

This is very easy to maximize since it is just one-dimensional.
It only depends on y.
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13.9 Example

Maximize profit of f(x1, x2) =x
1
4
1 x

1
4
2 . We have already found

c (y) for this firm in the example above.

c (y) = 2w
1
2
1 w

1
2
2 y

2

Let’s write the profit function in terms of only y:

π (y) = py − 2w
1
2
1 w

1
2
2 y

2

For an interior maximum (y is some number other than
0), the slope of this will have to be zero. Otherwise, the
firm could increase or decrease output and increase profit.
Taking the derivative:

∂
(
py − 2w

1
2
1 w

1
2
2 y

2
)

∂y
= p− 4

√
w1
√
w2y

Setting this equal to zero we have:

p = 4
√
w1
√
w2y

Notice, that in this form we have written it as marginal
revenue (p) equal to marginal cost

(
4
√
w1
√
w2y

)
. In gen-

eral, it is always true that the first order condition when
we maximize profit in terms of only y can be written as
MR = MC. Under the price taking assumption (that price
p does not depend on y) the marginal revenue is just p and
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we have p = MC. Returning to the example, we can solve y
to get the optimal y for any set of prices. This the optimal
(profit maximizing) level of output for any price.

y∗ =
p

4
√
w1
√
w2

We can also determine the profit a firm can earn under
any output and inpout prices by plugging this optimal y
back into the profit function written in terms of y. In this
case, it takes a little work to simplify it down to something
satisfying:

π (y∗) = p

(
p

4
√
w1
√
w2

)
− 2w

1
2
1 w

1
2
2

(
p

4
√
w1
√
w2

)2

=

p2

4
√
w1
√
w2
− p2

8
√
w1
√
w2

=
p2

8
√
w1
√
w2

Suppose p = 10 and w1 = w2 = 1 the maximum profit the
firm can earn is (plug prices into the profit function and
optimal y∗ above):

π∗ =
100

8
=

25

2

y∗ (p, w1, w2) =
p

4
√
w1
√
w2
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13.10 What can go wrong?

If returns to scale are linear or increasing then if we can
find any output level y where the firm earns positive profit
then there is no profit maximizing level of y. The
firm wants to produce as much as possible. This is because
with linear or increasing returns to scale, doubling inputs
will double cost and at least double output- so profit will
at least double. Thus, if we can find a point were profit is
positive, we can always use of all inputs and increase profit.

Recall this example from our profit maximization example
above. Suppose f (x1, x2) = x

1
2
1 x

1
2
2 , price of output is p =

100. w1 = 1, w2 = 1. Let’s see how easy it is to see here
that there will be no profit maximizing level of output.

In this case, the cost minimizing level of inputs are (try this
yourself using cost minimization):

x∗1 = x∗2 = y

The cost function is:

c (y) = 2y

The profit function in terms of y is:

π (y) = 100y − 2y = 98y

Now it is very clear that this profit function is increasing in
y. there is not profit maximizing solution!
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13.11 Linear Returns to Scale Example 2

Maximize profit of with f (x1, x2) =min
{

1
2x1, x2

}
using

cost minimization and then profit maximization.

To minimize costs, the firm should use 1
2x1 = x2 since oth-

erwise there will be wasted inputs. Plugging this back into
the production function to get the conditional factor de-
mands, we have:

x∗2 = y, x∗1 = 2y

This gives us the cost function:

c (y) = w12y + w2y = (2w1 + w2) y

Now we can write the profit function in terms of y:

π (y) = py − (2w1 + w2) y = (p− 2w1 − w2) y

If p > 2w1 + w2, this is a line with positive slope. There is
no profit maximizing level.

If p < 2w1 + w2 this is a line with negative slope. The
optimal level is y = 0 and profit is 0.

If p = 2w1 +w2 this is π (y) = 0. Profit will always be zero
and the firm can choose whatever they want.
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14 Firm Supply

In this chapter, we focus on the firm’s supply functions.
We are still focusing on firms that are price takers. The
is, they assume price is fixed and not a function of their
output. In this case, their profit functions can be written
as: π (y) = py − c (y) where the function c (y) is their cost
function which can be found my cost minimimization using
the methods in the previous section.

14.1 Inverse supply is equal to the marginal
cost function.

If a firm is maximizing profit at any point except y = 0, it
must be that the slop of the profit function is zero. That
is, for a firm to be producing something and also be max-
imizing profit, we need that: ∂π(y)

∂y = 0. For price taking
firms, this is equivalent to:

p = mc (y)

Let’s suppose the firm’s cost function is c (y) = 2y
3
2 . Let’s

suppose that the firm wants to determine how much to sup-
ply any any price. Profit in terms of p and y is:

π (y) = py − 2y
3
2

The firm’s marginal cost is mc (y) = 3
√
y. At the optimum,

they want to find the output y∗ that sets the mc (y∗) = p.
We have:
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p = 3
√
y

Solving for y gives us the supply function:

y =
(p

3

)2

For instance, what will they produce at price of 30? We
can plug in p = 30 and we get y = 100.

We can also get the inverse supply function which is useful
in solving equilibrium problems. It tells us at what price a
firm would produce some y output of output. Isolating p,
this is given by:

p = 3
√
y

Notice, this is exactly the condition we wrote down above
where mc = p. The firm’s inverse supply function comes
right out of this profit maximization condition. A firm’s
inverse supply is it’s marginal cost function.

14.2 Profit at The Maximum

Once we have a firm’s supply function, we can write down
how much the firm can earn at any price. In the previous
problem, we had the profit function:

π (y) = py − 2y
3
2
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At p = 30 for instance, we saw the firm produces y = 100.
Plugging in p = 30 and y = 100, we get that the firm earns
1000 at this price.

π = 30 (100)− 2 (100)
3
2 = 1000

We can also write down a profit function that gives us the
firm’s maximum profit at any price. This is very useful
for trying to find, for example, prices for which the firm can
earn positive profit. To write down this function, we plug
the firm’s supply function in for y in the profit function to
get everything in terms of p. In the example above, supply
was y =

(
p
3

)2. Plugging this in, we get:

π∗ = p

((p
3

)2
)
− 2

((p
3

)2
) 3

2

=
1

9
p3 − 2

27
p3 =

1

27
p3

Notice that this firm will earn positive profit at any price.
However, we can ask questions like “what does the price
need to be so the firm earns at least 10000 in profit?” To
do this, we write the inequality π∗ ≥ 10000. This is:

1

27
p3 ≥ 10000

Solving for p we get a solution of about:

14.3 Fixed Costs Don’t Affect Firm Be-
havior

Let’s suppose the firm in the previous problem had a fixed
cost of 1000 so that cost was c (y) = 2y

3
2 +1000. The profit
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function is:

π (y) = py − 2y
3
2 − 1000

Maximizing this profit function, we look for the point where
the slope is zero. We get:

p = 3
√
y

... and the firms supply is:

y =
(p

3

)2

This is the exact same supply function. The firm’s behavior
is the same. This is no coincidence, firms always ignore
fixed costs in choosing output. This is because fixed costs
simply translates the the profit function downwards but do
not change it’s shape. If some output y∗ maximizes some
profit function it will also maximize another profit function
that is just a translated version of that function as well. In
fact, we we were to work out the profit function for this
firm at any price, we would get:

π∗ =
1

27
p3 − 1000

It’s just 1000 lower than last time.

When we have fixed costs, it’s often interesting to ask when
a firm will have positive profit. Notice that is price was,
p = 10, profit would be: −962.963. This is perfectly fine.
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It’s still the most the firm can earn at the price p = 10.
If they did not produce anything, they would get −1000
(their fixed cost). Sometimes profit is negative even when
the firm is acting optimally. Would would price need to be
so that price is positive in this case?

1

27
p3 − 1000 ≥ 0

p ≥ 30

14.4 What Can go Wrong With p = mc?

There are two things that can go wrong. When the output
y we get from setting p = mc is not actually the optimal
output.

Notice above we said the p = mc is necessary for a profit
maximizing y when y > 0. So there are two things that can
happen.

1. p = mc gives us a negative y

2. y = 0 gives a higher profit than the y where p = mc

Let’s look at these in turn.

First 1. p = mc gives us a negative y. This is an easy
condition to check. Here’s an example:

Suppose c (y) = y2 + 10y+ 100. Let’s find the supply func-
tion. Set price to marginal cost:

p = 2y + 10
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Solving this for y gives the output where price is equal to
marginal cost:

y =
p− 10

2

If p < 10, this is a negative number. The firm cannot
produce negative. So for any price p < 10, there is no y > 0
where p = mc, so no y > 0 could possibly maximize profit.
The firm want’s to produce y = 0 when p < 10. So the true
supply function is:

y =
p− 10

2
, p ≥ 10

y = 0, p < 10

2. y = 0 gives a higher profit than the y where p = mc

Notice, above, I wrote that p = mc is only necessary for
a profit maximizing point where y > 0. It may well be
that y = 0 gives more profit that any point where p = mc.
We will not worry too much about this condition since it
requires a bit of a weird cost function, but it is good to
know that this can happen.

Suppose we have c (y) = y (y − 10)
2

+ 10y. Profit is:

π (y) = py − y (y − 10)
2 − 10y

Suppose p = 8 :

π (y) = 8y − y (y − 10)
2 − 10y
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Figure 14.1: A plot of π (y) = 8y − y (y − 10)
2 − 10y

Let’s have a look at this function:

Let’s set p = mc. The derivative is a little messy, but we
can simplify it. We get:

8 = 3y2 − 40y + 110

This has two solutions for y:

y ≈ 3.43, y ≈ 9.90

Looking at the plot above, y ≈ 3.43 is actually a local
minimum. y ≈ 9.90 is a local maximum. In fact, it is
the most profit the firm can earn if they produce y > 0 and
earns them about π ≈ −19.899. However, if the firm just
chose to produce zero, profit would be 0!

The point of this was to show you what can go wrong by
looking for profit maximizing points where p = mc. They
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can give you local minima instead of local maxima, and
furthermore, the profit of producing y = 0 might be higher
than the the most firm firm could earn by producing some
y > 0. This won’t affect most of our problems, but again,
it is useful to know the limitations of our methods.

14.5 Example

Suppose c (y) = 4y2 +50. Suppose this firm is a price taker.
Find the firms supply function and how much they can earn
at at price p. What does the price need to be so they earn
positive profit?

First, we set p = mc to find the optimal output:

p = 8y

Solve for y gives us the supply function:

y =
1

8
p

This is never negative so we don’t have to worry about that.
Let’s find the profit the firm gets by using this production
for any p. Plug y = 1

8p into the profit function:

π∗ = p

(
1

8
p

)
− 4

((
1

8
p

)2
)
− 50

=
1

16
p2 − 50
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Let’s just double check it’s never better to produce y = 0.
If the firm did choose y = 0 instead of y = 1

8p, they would
get profit −50. However, π∗ above is strictly greater than
−50 for any p. All good.

Now let’s find when profit is positive:

1

16
p2 − 50 > 0

1

16
p2 > 50

p2 > 800

p >
√

800

p > 28.285

As long as price is above 28.285, profit will be positive.

15 Monopoly

15.1 Monopolies and the Price-Taking As-
sumption

A single firm serving a market cannot reasonably assume
that price is fixed in their output.
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For a monopolist, the most they charge for output y is the
most that consumers will pay for it. This amount is given
by the inverse demand. Instead of py with a fixed price,
the revenue function is now p (y) y where p (y) is the inverse
demand.

π (y) = p (y) y − c (y)

From here, profit maximization proceeds almost identically
to profit maximization in the previous chapter. To maxi-
mize profit, a necessary condition is that the slope of the
profit function is zero.

In this case the slope is:

π′ (y) = p′ (y) y + p (y)− c′ (y)

Setting this to zero:

p′ (y) y + p (y)− c′ (y) = 0

Now rearranging this:

p′ (y) y + p (y) = c′ (y)

This is marginal revenue: p′ (y) y + p (y) equal to marginal
cost c′ (y). Notice, the marginal revenue has two parts.
When increasing output, revenue goes up by p (y), this is
the direct increase in revenue from selling more stuff at the
price of p (y). However, now the price also comes down,
and all of the output y that the monopolist sells is sold at
a lower price. This is the p′ (y) y part.
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What a monopolist tries to do is take advantage of their
market power. Since the monopolist controls the market,
they can crease scarcity by lowering output and raising
prices. How much do they raise price? That demands on
consumer demand. In fact, we can calculate a “markup” fac-
tor which tells us how much higher the monopolist’s price
is over their marginal cost. This comes from rearranging
the equation above.

First, let’s write c′ (y) asmc so we remember this is marginal
cost. Now, we can think of p′ (y) as being ∂p

∂y (the change
in p when y changes).

∂p

∂y
y + p = mc

Notice how ∂p
∂yy is almost ∂p

∂y
y
p which is simply the recipro-

col of elasticity of demand. Let’s divide both sides of the
equation by p to put it in this form.

∂p

∂y

y

p
+ 1 =

mc

p

And now we rewrite ∂p
∂y

y
p as 1

ε since it is the reciprocal of
elasticity.

1

ε
+ 1 =

mc

p

Simplifying this, we get:

1 + ε

ε
=
mc

p
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And now finally, let’s flip both sides to get the monopolist
markup.

ε

1 + ε
=

p

mc

This tells us that the ratio of the price charged to the
marginal cost of the firm is given by ε

1+ε .

Suppose elasticity of demand was −3. Then markup would
be −3

1−3 = 3
2 which is a 50% markup. The monopolist

charges 50% more than their cost.

One thing we know is that themonopolist will never op-
erate in the inelastic portion of the demand curve.
This is because, when demand is inelastic:

A 1% decrease in quantity will raise price by more than
1%, increasing revenue. However, since quantity decreased,
costs decrease as well. This has to raise profits.

Since we know demand will be elastic at the optimum, elas-
ticity will be ε < −1, and when this is the case, ε

1+ε >
1 which implies that p > mc, the monopolist always
charges more than their marginal cost.

15.2 Example

Monopolist has c (y) = y2 and demand is Q (p) = 100 − p.
The inverse demand is: p = 100− y. Let’s write the profit:

π (y) = ((100− y) y)− y2

Simplifying:
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π (y) = 100y − 2y2

The slope of this is:

∂ (π (y))

∂y
= 100− 4y

Setting this to zero and solving, we get the optimal output:

y = 25

And now we can get price by plugging this into the inverse
demand.

p = 100− 25 = 75

The firm’s profit is π = 1250.

Let’s check the markup. The marginal cost for the monop-
olist at y = 25 is 50. and price is 75. So markup is 3

2 .
We looked at a markup of 3

2 above. So, we should expect
elasticity to be −3 at y = 25. Let’s check that.

ε =
∂ (100− p)

∂p

p

100− p

= −1

(
p

100− p

)
= −3
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15.3 Another Example

Suppose demand is y = 100
p2 and cost is c (y) = y. In this

case, mc = 1 and demand has an elasticity of −2 every-
where. We would expect markup to be −2

1+(−2) = 2. Let’s
check:

Construct the monopolists profit function. First we need
the inverse demand:

p =

(
100

y

) 1
2

Profit is:

π =

(
100

y

) 1
2

y − y

The first order condition is:

∂

((
100
y

) 1
2

y − y
)

∂y
= 5

√
1

y
− 1 = 0

Solving this for y, we get:

25 = y

They charge what consumers will pay for 25 units. Evaluate
the inverse demand function at 25.
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p =

(
100

25

) 1
2

= 2

Notice that, as expected, price is two times more than
marginal cost.

15.4 Deadweight Loss

We have seen that welfare is maximized when firms price
at marginal cost. A monopolist artificially restricts output
and raises price.

To look at how monopoly pricing affects consumer surplus
and total surplus, let’s start by looking at perfect competi-
tion. Suppose we have a linear inverse demand of the form
p = b−m∗y and firms have a constant marginal cost of mc.
We know the market price will be p = mc. We have seen
in previous chapters that the height of the inverse demand
curve can be thought of as the amount some consumer is
willing to pay for the good. Thus, the difference between
that height and the market price is the surplus the consumer
gets for being willing to pay some amount, but having to
pay less.

Firms on the other hand, are willing to sell at a price at
or above marginal cost. That is where they break even.
When price is equal to marginal cost, we maximize the total
number of units sold. When p = mc there are no more
consumers left who are willing to buy at a price above which
any firm is willing to sell, since the willingness to pay for
any consumer is below the marginal cost. This is depicted
in the chart below. Notice as well that the entire shaded
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triangle is captured as consumer surplus and no surplus
is captured by the firms (there is no area above marginal
cost but below price). Thus, perfect competition maximizes
total surplus and all of that surplus goes to consumers.

Figure 15.1: Consumer surplus is maximized when price is
equal to marginal cost. This type of pricing is also efficient,
because every consumer willing to buy at a price the firm
is willing to sell for (their marginal cost) gets to buy the
good. Thus, total surplus is maximized.

What a monopolist tried to do is maximize profit by balanc-
ing quantity and price. To graph the monopolist’s problem
on the same chart as above, we need to first find marginal
revenue since a monopolist sets mr = mc and for a monop-
olist, marginal revenue is not simply price as it is for firms
in perfect competition. Since inverse demand is b − my,
revenue for the monopolist is y (b−m ∗ y) = yb −m ∗ y2.
Marginal revenue is thus b − 2m ∗ y this is a line with the
same intercept as inverse demand but with a slope twice as
steep. The monopolist quantity is set where this line meets
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mc and that quantity is marked as qm in the graph below.
The monopolist sets a price equal to the most consumers
will pay for qm which is where qm is on the inverse demand
curve. This is marked as pm. The consumer surplus is
marked in purple, and the producer surplus (the area be-
low price but above marginal cost) is marked in red. This
is also the profit of the firm.

Notice that the sum of consumer and producer surplus is
now not equal to the entire triangle below the inverse de-
mand but above marginal cost. Instead, there is some loss
of total surplus. This is the dead weight loss caused by the
monopolist restricting output to raise price.

Technically, there are some consumers willing to buy at a
price the monopolist is willing to sell at. However, if the
monopolist can only set one price, they don’t want to sell
to those people, since they will have to lower the price for
everyone to get the price low enough that those people will
be willing to buy.

156



Figure 15.2: The monopolist restricts quantity from the
efficient level (p=mc), this let’s them raise the price and
maximize profit (orange area). Because quantity is reduced
from the efficient level, there is a loss of surplus (aka. dead
weight loss). This is the green area.

Thus, the ability of a monopolist to charge only one price
along with their desire to maximize profit leads to an inef-
ficient scarcity. Let’s see this one last time in a very simple
example.

Suppose there are three people willing to pay $3,$2,$1 for a
good respectively. Suppose the monopolist has zero marginal
cost. In perfect competition, all consumers would get to buy
the good. But what would the monopolist do?

Here is a chart of the monopolists profit at different prices.
Notice, trying to sell to everyone and trying to sell to just
the person with the highest willingness to pay both leads to
less profit than balancing the price and quantity and selling
to two people at $2.
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Price Profit Who Buys
$3 $3 Person 1
$2 $4 1,2
$1 $3 1,2,3

However, person 3 is willing to buy at $1. The monopolist
knows this, they just can’t take advantage of that informa-
tion because if they try to sell to person 3, they have to
lower the price to everyone.

But what if they didn’t have to lower the price for everyone?
That is the topic of the next section.

16 Price Discrimination

In the previous chapter, we saw how a monopolist can in-
crease their revenue by restricting output to charge a higher
price. In a competitive market, it makes sense that a firm
would sell everything at one price– the market price. But a
firm with market power can charge different price to differ-
ent people either directly or indirectly, they can often earn
more profit.

16.1 Types of Price Discrimination

First- Can identify every consumer- charge different price.
Examples: No true examples exist. Airlines sometimes
come close to this when they use complex pricing schemes
to try and extract more and more surplus from consumers.
Everyone on the airplane probably paid a different price for
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their tickets.

Second - Cannot identify consumers- offer different pack-
ages.
Examples: Quantity discounts, quality differences (first-
class/coach tickets, “reserve” wines, “flagship” high-end prod-
ucts that differ little
from cheaper counterparts.

Third - Can identify groups- offer different packages.

Examples: Student tickets. Senior discounts.

Bundling - Monopolist sells different goods- sell packages.
Examples: Cable TV Packages, Software Bundles.

Two-Part Tariff - Consumers buy multiple units- sell “mem-
berships”.
Examples: Theme park tickets (rides are free), Free-coffee
for the month when you pay $19.99 to buy this mug.

16.2 First Degree Price Discrimination

Let’s return to our example from the end of the last sec-
tion. Suppose there are three people willing to pay $3,$2,$1
for a good respectively. Suppose the monopolist has zero
marginal cost. We say that the optimal price is $2 at which
the monopolist sells two units of the good and earns $4.

But if it knows everyone’s willingness to pay and can
charge them different prices, the firm could earn $6!
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When the monopolist charges one price, the consumers get
some consumer surplus. This is because there are some
consumers who get the good at a price lower then they are
willing to pay. On other hand, there is also some dead
weight loss because the monopolist restricts quantity from
the efficient level. (Recall that the efficient level of quantity
is where price is equal to marginal cost. At that price, every
consumer willing to buy at a price the firm is willing to sell
at gets to buy the good. Thus, all efficient trades happen.)

When a monopolist uses first degree price discrimination
there is no dead-weight loss! This is because the firm can
sell to everyone who it is efficient to sell to at exactly the
price they are willing to buy at. This, first degree price dis-
crimination is efficient. However, the monopolist captures
the entire surplus. Consumers are left with zero surplus.

16.3 Third Degree Price Discrimination

Suppose there are two groups of people: students and non-
students and a firm that sells some good to both groups.
Assume the firm has zero marginal cost.

Students have demand function:

ys = 100− 2p

Non-students have demand function:

yn = 100− p
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The entire market thus has demand function:

Y = 100− 2p+ 100− p = 200− 3p

The inverse demands are ps = 100−ys
2 , pn = 100 − yn, p =

200−Y
3 .

Suppose the monopolist was going to set one price for the
entire market. Their profit function would be:

π =
200− Y

3
Y

By taking the first order condition and solving we find that
the optimal Y = 100 and the optimal price is p = 100

3 . At
this price ys = 1

3 (100) (about 33) is the student demand
and yn = 2

3 (100) about 66 is the non-student demand. The
firm’s profit is: π ≈ 3333.33.

What if the firm wanted to set prices differently for students
and non-students?

The profit earned from students is:

πs =
100− ys

2
ys

The profit earned from non-students is:

πn = (100− yn) yn

Solving the first-order conditions, we get that the optimal
ys = 50 and the optimal yn = 50. The prices the firm can
charge are ps = 25 and pn = 50. The profits are:
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πs = 1250

πn = 2500

The total profit is:

π = πs + πn = 3750

Notice the firm can earn about 416.67 more by setting dif-
ferent prices!

16.4 Bundling

Bundling can occur when a firm sells multiple products.
The goal of bundling is to take advantage of differences in
types of demand by forcing consumers to buy bundles of
goods at a single price rather than selling each good at a
separate price.

Example:

Suppose a firm sells pants and shirts. There are two con-
sumers who each demand up to one shirt and one pair of
pants. They are willing to pay the following:

Shirt Pants Both
Consumer 1 50 30 80
Consumer 2 10 80 90

If the firm sells at different prices:
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If they price shirts at 50, they sell one shirt and earn $50.
If they price at 10, they sell two shirts and earn $20.

If they price pants at 80, they sell one pair of pants and
earn $80. If they price at 30, they sell two pairs of pants
and earn $60.

Thus, the best they can do is sell one shirt at $50 and one
pair of pants at $80 to earn $130.

However, notice if they force consumers to buy a bundle of
a shirt and a pair of pants they can price that bundle at
$80, sell two bundles and earn $160.

16.5 Two-Part Tariff

Two-part tariffs can be used when consumers demands mul-
tiple units of a good. An example of this is theme parks
tickets. The theme park could charge a price per ride. In
fact, this happens at some fairs. However, instead, rides are
free once you have purchased the ticket (Usually for some
exorbitant amount. In 2021, Disney tickets are up to $150
per day!)

The goal of a a two-part tariff is to create as much consumer
surplus as possible by selling the consumer as much as is
efficient (price at marginal cost). This will create the most
consumer surplus possible. But instead of leaving that con-
sumer with the surplus, charge them an “entry fee” (this is
the other part of the tariff) equal to their consumer surplus.

Example. Suppose a consumer’s demand for coffee is q =
10− p and the firm has zero marginal cost for coffee. If the
firm sells to that consumer at a single price it’s profit of
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selling the consumer q cups of coffee at the most they will
pay for those q cups is:

π = (10− q) q

The best thing to do is sell them 5 cups of coffee at 5 dollars
and earn $25. This is the green rectangle in the graph
below. But notice, if the firm prices at marginal cost ($0)
the consumer will demand 10 cups of coffee. Their surplus
is the area below the inverse demand but above price for
those 10 cups. That’s the blue triangle in the graph below.
That surplus is $50 and so they would be willing to pay up
to $50 for the right to buy cups of coffee at $0 (assuming
you don’t give them the option to buy at $5 per cup). So
the firm can earn $50 by forcing the consumer to pay an
“entry fee” of $50 and then give them coffee for free.
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Figure 16.1: Earning more with a two-part tariff. Green
is the profit under optimal unit pricing. Blue is the con-
sumer surplus under marginal cost pricing that can then be
captured with an entry fee.

17 Oligopoly

In the previous chapters, we have studies two extremes of
the competition spectrum. In perfect competition, each
firm is so small, they do not have to worry about what
any other firm is doing, they just take prices as fixed and
maximize their profit. With monopoly, there is only one
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firm. That firm does not treat prices as fixed, instead, they
try to use the fact that reducing quantity will allow them
to raise the price.

What is in between these two extremes? What if there is
more than one firm, but not enough that it is reasonable for
firms to take prices as fixed in their own quantity? That is
what we will study in this chapter.

Here, we are going to work through a model calledCournot
Oligopoly. Eventually, we will show that this model actu-
ally “nests” perfect competition and monopoly.

As a warning, this model is more complex than any we
have studied before. Furthermore, it is the first where the
outcome of one firm (that is their profit), depends on the
choices of other firms. In fact, this is the first time we
will really look at a problem where the direct choices of an
individual (in this case individual firm) affect the optimal
choices of others. This is a strategic model.

Strategy is the subject of study in a field of economics called
game theory. So this will also serve as a very light intro-
duction to some concepts of game theory. But, don’t worry,
you do not need to know any game theory to understand
this section.

17.1 The Model

Let’s start trying to understand this model, but starting
with the monopolists profit function. Let p (q) be the in-
verse demand function. That is, how much consumers would
be willing to pay to buy quantity q. The profit function is:
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π = (p (q)) q − c (q)

But what if we added another firm to this model? First of
all, to keep the firms straight, we need to name them. Let’s
call our original monopolist firm 1 and the other firm, firm
2. q1 will represent firm 1’s quantity and 2 will represent
firm 2’s quantity.

Now, let’s try to think about what firm 1′s profit function
would be. For now, let’s suppose we knew firm 2 always
produced 10 units of output. That is q2 = 10. Whatever
firm 1 chooses for q1, the total output will be q1 +10. Thus,
the price in the market will be not p (q1) but p (q1 + 10).
Thus, firm 1’s profit would be:

π1 = (p (q1 + 10)) q1 − c (q1)

To make this concerete, suppose c (q1) = 10q1 and demand
is q = 100 − p. Thus inverse demand is p (q) = 100 − q
(where q = q1 + q2). The profit function of firm 1 in a
market with a firm 2 that always produces 10 units is:

π1 = (100− (q1 + 10)) q1 − 10q1

Firm 1 could maximize this as usual, but finding where the
marginal profit is zero. The marginal profit is:

∂ ((100− (q1 + 10)) q1 − 10q1)

∂q1
= 80− 2q1
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Setting this to zero and solving for q1, we get q1 = 40. We
can also solve for the price and profit.

However, this is not very satisfying. We solved for q1 by
having them maximize their profit in a market where q2

is assumed to always be q2 = 10. But why would firm 2
always want to produce 10? It probably is not optimal.
What we really want to do is have both firms maximizing
profit at the same time. So, let’s write down both of their
profit functions:

π1 = (100− (q1 + q2)) q1 − 10q1

π2 = (100− (q1 + q2)) q2 − 10q2

Now, they both have to simultaneously be maximizing profit
given what the other is producing. Let’s find where
both firms are maximizing profit given the choice of the
other. This is given by where each firm has zero marginal
profit.

∂ ((100− (q1 + q2)) q1 − 10q1)

∂q1
= 0

∂ ((100− (q1 + q2)) q2 − 10q2)

∂q2
= 0

Solving these we get:

Firm 1:− 2q1 − q2 + 90 = 0
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Firm 2:− q1 − 2q2 + 90 = 0

Solving these for q1 and q2 respectively give us the best
response functions for the firms. These tell us what each
firm wants to produce given the choice of the other firm.

Firm 1: q1 = 45− 1

2
q2

Firm 2: q2 = 45− 1

2
q1

Notice if we plug in q2 = 10 into the best response for firm
1, we get that firm 1’s best response is 45 − 1

2 (10) = 40.
Exactly what we found before. But notice that the choice
of q2 = 10 is not a best response for firm 2 to q1 = 40. The
best response for firm 2 to q1 = 40 is q2 = 25. That is,
firm 2 would know that if they produce 10, firm 1 would
produce 40, but then firm 2 does not want to produce 10,
but instead they want to produce 25, which would also lead
firm 1 to want to update their quantity and so on.

If the quantities chosen by the firms are not best responses
to each-other, then there will be incentive for some firm to
change their cost. The firms choices wont be in equilibrium.
In fact, in game theory, the key equilibrium concept, known
as Nash Equilibrium, is defined as a set of strategies (in
this case quantities) that are mutual best responses. Let’s
find the Nash Equilibrium for this game.

Solve our best response functions simultaneously:

q1 = 45− 1

2
q2
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Plug this into the best response of firm 2:

q2 = 45− 1

2

(
45− 1

2
q2

)
Solving:

q2 = 30, q1 = 30

Price is (using the inverse demand function)

100− (30 + 30) = 40

Profit of each firm is

πi = 40 ∗ 30− 10 ∗ 30 = 900

For comparison, what would a monopolist do and earn?

π = (100− q) q − 10q

∂ ((100− q) q − 10q)

∂q
= 90− 2q

q = 45, p = 55, π = 2025

In comparison to monopoly, total quantity is higher, price
is lower and the total profit of the firms is lower. This
makes sense. Competition is expected to drive down price
and profits and increase quantity. Does this extend to more
than two firms?

170



17.2 N Firms

We need a little extra notation to work with more than 2
firms.

Number of firms: N

Firm i’s quantity: qi

Total quantity: Q =
∑N
i=1 qi

Total quantity of all firms except i: Q−i = Q− qi
For example. N = 3. Let: q1 = 5,q2 = 10, q3 = 15.

Q = 30, Q−1 = 25, Q−2 = 20, Q3 = 15

We can now write the profit of any firm in this market this
way:

πi = (100− (Q)) qi − 10qi

For convenience, let’s split Q into Q−i + qi.

πi = (100− (Q−i + qi)) qi − 10qi

Now, we can solve for the best response of firm i to the
other firms producing Q−i. The marginal profit is:

∂ ((100− (Q−i + qi)) qi − 10qi)

∂qi
= 100−Q−i − 2qi − 10

Setting this to 0 and solving for qi, we get:
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qi = 45− 1

2
Q−i

This is the best response for any firm to the other firms
producing a total of Q−i. To find a Nash equilibrium, we
technically need to solve this system of equations:

q1 = 45− 1

2
Q−1

q2 = 45− 1

2
Q−2

...

qN = 45− 1

2
Q−N

But, there is a trick we can use to solve this. We know
there will be a symmetric equilibrium in this game. That
is, an equilibrium where all the quantities are the same: i, j,
qi = qj = q∗.

Note that if all the firms produce the same, we also have
that the sum of what the “other firms” produce will be the
same for every firm and this is: Q−i = Q−j = (N − 1) q∗.
Impose these conditions on the system of equations above:

q∗ = 45− 1

2
((N − 1) q∗)
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q∗ = 45− 1

2
((N − 1) q∗)

...

q∗ = 45− 1

2
((N − 1) q∗)

It is still N equations, but now they are all the same equa-
tion. Solve any one of them:

q∗ +
1

2
((N − 1) q∗) = 45

2q∗ + (N − 1) q∗ = 90

(N + 1) q∗ = 90

q∗ =
90

N + 1

We can also get the market quantity by multiplying q∗ by
N (the number of firms).

Q∗ =
N

N + 1
90

Now we have the equilibrium quantity for each firm for any
number N of firms.
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For example: N = 2 we get exactly what we found before:

q∗ =
90

2 + 1
= 30

Q = 2 (30) = 60

p = 100− 60 = 40

For N = 1 we also get exactly what we found before for a
monopolist:

q∗ =
90

1 + 1
= 45

Q = 1 (45) = 45

p = 100− 45 = 55

As N →∞:

q∗ → 0

Q→ 90

p→ 100− 90 = 10
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Notice that price is approaching 10 which is equal to the
marginal cost of the firms. That is, price is approaching
marginal cost which is the perfect competition price. Fur-
thermore in perfect competition, since the price would be
10, we know the quantity would be whatever consumers
demand in equilibrium which is Q = 100− 10 = 90.

Thus, as N grows large, the equilibrium of the Cournot
oligopoly game approaches the perfect competition outcome.
A very nice and elegant outcome to end out class on.
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