1 Bundles and the Feasible Set

1.1 Bundles

Bundle: $x=\left(x_{1}, x_{2}\right)$
Ice Bowls
$(1,1)$ one scoop of vanilla and one scoop of chocolate.
$(2,1)$ two scoops of vanilla and one scoop of chocolate.
$(0,0)$ nothing

1.2 Feasible Set

X the feasible set (consumption set, universe of choice objects).
$X=\mathbb{R}_{+}^{2}$ the set of all pairs of numbers from 0 to infinity.
$(1,1) \in X$
$(-1,0) \notin X$

2 Budget Set

The budget set is what a consumer in your model is actually asked to choose from.
$B \subseteq X$ the budget set is a "weak" subset of the feasible set.
Finn can have up to two total scoops of ice cream of any flavor.
Set-builder notation.
$B=\left\{\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in X \& x_{1}+x_{2} \leq 2\right\}$
Finn can have up to two scoops of ice cream of vanilla and up to two scoops of chocolate.
$B=\left\{\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in X \& x_{1} \leq 2 \& x_{2} \leq 2\right\}$

2.1 Budget Sets from Prices and Income

Competitive Budgets are constructed from prices and income.
p_{1}, p_{2} prices of good 1 and good 2 a
m income
The budget set is generated from this inequality:

$$
p_{1} x_{1}+p_{2} x_{2} \leq m
$$

The budget line:

$$
\begin{aligned}
& p_{1} x_{1}+p_{2} x_{2}=m \\
& x_{2}=-\frac{p_{1}}{p_{2}} x_{1}+\frac{m}{p_{2}}
\end{aligned}
$$

Three interesting things about the budget line: x_{1} intercept:

$$
\begin{gathered}
p_{1} x_{1}+p_{2} x_{2}=m \\
p_{1} x_{1}+p_{2}(0)=m \\
x_{1}=\frac{m}{p_{1}} \\
\left(\frac{m}{p_{1}}, 0\right)
\end{gathered}
$$

x_{2} intercept

$$
\begin{gathered}
x_{2}=\frac{m}{p_{2}} \\
\left(0, \frac{m}{p_{2}}\right)
\end{gathered}
$$

Slope.
Slope of the budget line represents how a consumer has to trade off between the two goods to stay within their budget.
The slope can be interpreted this way:
"If I want one more unit of good 1 , how much good 2 do I have to give up?"

$$
-\frac{p_{1}}{p_{2}}
$$

2.2 Changing Prices and Income

See Notes

2.3 Taxes and other scenarios

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

Income tax

$$
p_{1} x_{1}+p_{2} x_{2}=(1-0.4)(m)
$$

Income tax is "non-distortionary" because it does not change the tradeoffs which are represented here by the ratio of prices $-\frac{p_{1}}{p_{2}}$.
Ad-Valorem Tax on all Goods.

$$
\begin{gathered}
(1+0.09)\left(p_{1} x_{1}+p_{2} x_{2}\right)=m \\
p_{1} x_{1}+p_{2} x_{2}=\frac{m}{1+0.09}
\end{gathered}
$$

Distortionary Taxes.

Quantity Tax on Just One Good.

$$
\left(p_{1}+t\right) x_{1}+p_{2} x_{2}=m
$$

New slope after the tax:

$$
-\frac{p_{1}+t}{p_{2}}
$$

3 The Preference Relation \succsim

A relation is a mathematical/formal way of defining relationships between pairs of things.
"Is a sibling of" is a relation on the set of people. If we represent this relation with S

$$
\begin{aligned}
& \text { Greg S Christina } \\
& \text { Christina S Greg }
\end{aligned}
$$

Greater than is a relation on the set of numbers.

$$
\begin{aligned}
& 8>4 \\
& 9>3
\end{aligned}
$$

Preference relation

$$
(2,0) \succsim(1,0)
$$

