## 1 Utility

### 1.1 Definition

Utility is a function that maps the consumption set / fesible set $X$ into numbers.

$$
\begin{aligned}
& U(1,1)=2 \\
& U(2,1)=3 \\
& U(5,7)=12
\end{aligned}
$$

A utility function $U(x)$ represents preferences $\succsim$ when, for every pair of bundles $x$ and $y, U(x) \geq U(y)$ if and only if $x \succsim y$. Informally, better bundles get higher numbers.

### 1.2 Transformations

Any strictly increasing function (monotonic transformation) of a utility function represents the same preferences as the original utility function.
$U\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
Here are some utility functions that represent the same preferences.
$\left(x_{1}+x_{2}\right)^{2}$
$\left(x_{1}+x_{2}\right)+2$
$\ln \left(x_{1}+x_{2}\right)$
$\sqrt{\left(x_{1}+x_{2}\right)}$
There are many ways to represent the same preferences, and since we only care about representing the underlying preferences, all are equally valid utility functions.
Here is another example:
$u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$

$$
\ln \left(x_{1}^{\alpha} x_{2}^{\beta}\right)=\ln \left(x_{1}^{\alpha}\right)+\ln \left(x_{2}^{\beta}\right)=\alpha \ln \left(x_{1}\right)+\beta \ln \left(x_{2}\right)
$$

Thus, $\alpha \ln \left(x_{1}\right)+\beta \ln \left(x_{2}\right)$ and $x_{1}^{\alpha} x_{2}^{\beta}$ represent the same preferences. The former sometimes easier to work with.

### 1.3 MRS from Utility Function

Recall, MRS (marginal rate of substitution) is the slope of the indifference curve. It measures, roughly, how much $x_{2}$ will you give up to get one more $x_{1}$.

$$
M R S=-\frac{\frac{\partial\left(u\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}}{\frac{\partial\left(u\left(x_{1}, x_{2}\right)\right)}{\partial x_{2}}}=-\frac{M U_{1}}{M U_{2}}
$$

$M U_{1}$ and $M U_{2}$ are the "marignal utilities" of the utility function. They measure how does utility increase when I increase that good by a little bit.
Suppose $M U_{1}=2$ and $M U_{2}=1$.

$$
M R S=-\frac{2}{1}
$$

MRS for $x_{1}+x_{2}$

$$
-\frac{\frac{\partial\left(x_{1}+x_{2}\right)}{\partial x_{1}}}{\frac{\partial\left(x_{1}+x_{2}\right)}{\partial x_{2}}}=-\frac{1}{1}
$$

Willing to give up 1 unit of good 2 to get one unit of good 1.
MRS for $\left(x_{1}+x_{2}\right)^{2}$

$$
-\frac{\frac{\partial\left(\left(x_{1}+x_{2}\right)^{2}\right)}{\partial x_{1}}}{\frac{\partial\left(\left(x_{1}+x_{2}\right)^{2}\right)}{\partial x_{2}}}=-\frac{2\left(x_{1}+x_{2}\right) * 1}{2\left(x_{1}+x_{2}\right) * 1}=-1
$$

MRS for $\ln \left(x_{1}+x_{2}\right)$

$$
-\frac{\frac{\partial\left(\ln \left(x_{1}+x_{2}\right)\right)}{\partial x_{1}}}{\frac{\partial\left(\ln \left(x_{1}+x_{2}\right)\right)}{\partial x_{2}}}=-\frac{\frac{1}{x_{1}+x_{2}} 1}{\frac{1}{x_{1}+x_{2}} 1}=-1
$$

If the MRS is the same for two utility functions, they represent the same preferences.
$\operatorname{MRS}$ for $x_{1}^{2} x_{2}^{2}$

$$
-\frac{\frac{\partial\left(x_{1}^{2} x_{2}^{2}\right)}{\partial x_{1}}}{\frac{\partial\left(x_{1}^{2} x_{2}^{2}\right)}{\partial x_{2}}}=-\frac{2 x_{1} x_{2}^{2}}{2 x_{1}^{2} x_{2}}=-\frac{x_{2}}{x_{1}}
$$

$\operatorname{MRS} \ln \left(x_{1}\right)+x_{2}$
$M U_{1}=\frac{\partial\left(\ln \left(x_{1}\right)+x_{2}\right)}{\partial\left(x_{1}\right)}=\frac{1}{x_{1}}$
$M U_{2}=\frac{\partial\left(\ln \left(x_{1}\right)+x_{2}\right)}{\partial\left(x_{2}\right)}=1$

$$
-\frac{\frac{\partial\left(\ln \left(x_{1}\right)+x_{2}\right)}{\partial\left(x_{1}\right)}}{\frac{\partial\left(\ln \left(x_{1}\right)+x_{2}\right)}{\partial\left(x_{2}\right)}}=-\frac{\frac{1}{x_{1}}}{1}=-\frac{1}{x_{1}}
$$

### 1.4 Examples of Utility Functions

Canonical forms of utility functions.

### 1.4.1 Perfect Substitutes

$u\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$
Finn's preferences for ice cream. Only cares about number of scoops: $x_{1}+x_{2}$
Preferences over eggs and dozens of eggs $\left(x_{2}\right) . u\left(x_{1}, x_{2}\right)=x_{1}+12 x_{2}$
For $u\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2} M R S=-\frac{a}{b}$

### 1.4.2 Quasi-Linear

$u\left(x_{1}, x_{2}\right)=f\left(x_{1}\right)+x_{2}$
Examples:
$u\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+x_{2} . M R S=-\frac{1}{x_{1}}$
$u\left(x_{1}, x_{2}\right)=\sqrt{x_{1}}+x_{2} . M R S=-\frac{\frac{\partial\left(\sqrt{x_{1}}+x_{2}\right)}{\partial x_{1}}}{\frac{\partial\left(\sqrt{x_{1}}+x_{2}\right)}{\partial x_{2}}}=-\frac{\frac{\partial\left(x_{1}^{\frac{1}{2}}+x_{2}\right)}{\partial x_{1}}}{\frac{\partial\left(x_{1}^{\frac{1}{2}}+x_{2}\right)}{\partial x_{2}}}=-\frac{\frac{1}{2} x_{1}^{-\frac{1}{2}}}{1}=-\frac{1}{2} \frac{1}{x_{1}^{\frac{1}{2}}}$

### 1.4.3 Cobb-Douglas

$u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$

$$
M R S=-\frac{\frac{\partial\left(x_{1}^{\alpha} x_{2}^{\beta}\right)}{\partial\left(x_{1}\right)}}{\frac{\partial\left(x_{1}^{\alpha} x_{2}^{\beta}\right)}{\partial\left(x_{2}\right)}}=-\frac{\alpha x_{2}}{\beta x_{1}}=-\frac{\alpha}{\beta} \frac{x_{2}}{x_{1}}
$$

### 1.4.4 Perfect Complements

Left and right shoes $u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}$
$\min \{10,20\}=10$
Pies?
2 apples $\left(x_{1}\right)$ and 1 crust $\left(x_{2}\right)$.
$(4,1)$
Most pies I can make with 4 apples is 2. $\frac{x_{1}}{2}$
Most pies I can make with 1 crust is 1. $x_{2}$

$$
\min \left\{\frac{x_{1}}{2}, x_{2}\right\}
$$

To get the "no waste line" set the two things inside the min equal to eachother.

$$
\frac{x_{1}}{2}=x_{2}
$$

3 widgets $\left(x_{1}\right)$ and 2 hours of labor $\left(x_{2}\right)$ to make a bicycle.

$$
\min \left\{\frac{x_{1}}{3}, \frac{x_{2}}{2}\right\}
$$

Line of no waste:

$$
\begin{aligned}
& \frac{x_{1}}{3}=\frac{x_{2}}{2} \\
& \frac{2}{3} x_{1}=x_{2}
\end{aligned}
$$

### 1.5 Utility to Indifference Curves

Tricks for drawing indifference curves.

$$
u\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}
$$

Let's find the indifference curve that gives utility 10. All of the combinations of $x_{1}$ and $x_{2}$ that give utility of 10 are:

$$
\begin{aligned}
& x_{1}+2 x_{2}=10 \\
& 2 x_{2}=10-x_{1} \\
& x_{2}=5-\frac{1}{2} x_{1}
\end{aligned}
$$

Let's find the indifference curve that gives utility 20. All of the combinations of $x_{1}$ and $x_{2}$ that give utility of 20 are:

$$
\begin{aligned}
& x_{1}+2 x_{2}=20 \\
& x_{2}=10-\frac{1}{2} x_{1}
\end{aligned}
$$

Let's look at the indifference curves for $\ln \left(x_{1}\right)+x_{2}$ Indifference curve for utility of 5 :

$$
\ln \left(x_{1}\right)+x_{2}=5
$$

$$
x_{2}=5-\ln \left(x_{1}\right)
$$

$$
x_{1}=1 ?
$$

$$
x_{2}=5-\ln (1.0)=5
$$

$(1,5)$ is on this indifference curve $x_{1}=10$

$$
x_{2}=5-\ln (10)=2.69741
$$

$(10,2.69741)$

