0.1 Elasticities

A way of measure a rate of change that is "unit free".

Normally when measure how something changes in response to a change in something else, the magnitude depends on how we measure those things.

How does demand change when we change price?

Price of apples p = 1 and market demand X = 1000.

I price increases to p=2 market demand drops to X=500.

The change is a decrease of 500 for a one dollar increase in price.

Let's measure demand in dozens.

$$p = 1, X = 83.3333$$

$$p = 2, X = 41.6667$$

One dollar increase in price leads to a 41.6666 decrease in demand for dozens of apples.

No matter how we measure this, there is a 100% increase in price and a 50% decrease in demand. This is a rate of change that doesn't depend on units.

This also works for derivatives:

$$\frac{\partial x}{\partial n}$$

The derivative is a rate of change, it is also dependent on how we measure things.

An elasticity is like a derivative except it doesn't depend on units of measure. Instead it is in terms of percentages.

Change in demand relative to the change in price:

$$\frac{\Delta x}{\Delta p}$$

$$\frac{(1000 - 500)}{(2 - 1)} = \frac{500}{1}$$

$$\frac{\frac{1000 - 500}{1000}}{\frac{2 - 1}{1}} = \frac{0.5}{1} = 0.5$$

Or 50%

To move from a change to a percent change:

$$\frac{\Delta X}{\Delta p} \to \frac{\frac{\Delta X}{X}}{\frac{\Delta p}{p}}$$

$$\frac{\frac{\Delta X}{X}}{\frac{\Delta p}{p}} \to \frac{\frac{\partial X}{X}}{\frac{\partial p}{p}}$$

This is now a derivative measured in percentage terms.

Instead of asking (derivative) how much does on thing change when we change another thing by a "little bit". We ask what is the percent change in one thing when the change the other thing by some very small percentage.

Elasticity: What is the percent change in one thing when the other thing increases by 1%?

Price elasticity:

What is the percent change in demand when the price of that good goes up by 1%?

$$\varepsilon_{1,1} = \frac{\frac{\partial x_1}{x_1}}{\frac{\partial p_1}{p_1}} = \frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1}$$

Cross Price elasticity:

What is the percent change in demand when the price of **the other good** goes up by 1%?

$$\varepsilon_{1,2} = \frac{\frac{\partial x_1}{x_1}}{\frac{\partial p_2}{p_2}} = \frac{\partial x_1}{\partial p_2} \frac{p_2}{x_2}$$

Income elasticity:

What is the percent change in demand when income increases by 1%?

$$\eta_1 = \frac{\frac{\partial x_1}{x_1}}{\frac{\partial m}{m}} = \frac{\partial x_1}{\partial m} \frac{m}{x_1}$$

0.2 Cobb-Douglas Example

Suppose utility is $u = x_1 x_2$. Demand for good 1 is: $x_1 = \frac{\frac{1}{2}m}{p_1}$.

$$x_1 = \frac{\frac{1}{2}m}{p_1}$$

Price elasticity:

$$\varepsilon_{1,1} = \frac{\partial x_1}{\partial p_1} \frac{p}{x_1}$$

$$=\frac{\partial \left(\frac{\frac{1}{2}m}{p_1}\right)}{\partial p_1}\frac{p_1}{\frac{\frac{1}{2}m}{p_1}}$$

Take the derivative:

$$\frac{\partial \left(\frac{1}{2}mp_1^{-1}\right)}{\partial p_1} \frac{p_1}{\frac{1}{2}m} = \left(-1\frac{1}{2}mp_1^{-2}\right) \frac{p_1}{\frac{1}{2}m}$$

$$= \frac{-\frac{1}{2}m}{p_1^2} \frac{p_1}{\frac{1}{2}m}$$

$$= \frac{-\frac{1}{2}m}{p_1^2} \frac{p_1^2}{\frac{1}{2}m}$$

$$= \frac{-\frac{1}{2}m}{p_1^2} \frac{p_1^2}{\frac{1}{2}m} = -1$$

Price elasticity of demand for a good is negative one.

"When price goes up by 1% demand goes down by 1%" Income elasticity:

Intuition tells us the answer should be 1.

$$\eta_1 = \frac{\partial \left(\frac{\frac{1}{2}m}{p_1}\right)}{\partial m} \frac{m}{\frac{\frac{1}{2}m}{p_1}}$$

$$= \frac{\frac{1}{2}m}{\frac{1}{2}m}$$

$$= \left(\frac{\frac{1}{2}}{p_1}\right) \frac{m}{m\left(\frac{\frac{1}{2}}{p_1}\right)} = 1$$

Cross price elasticity:

$$\varepsilon_{1,2} = \frac{\partial \left(\frac{\frac{1}{2}m}{p_1}\right)}{\partial p_2} \frac{p_2}{\frac{\frac{1}{2}m}{p_1}} = 0 \frac{p_2}{\frac{\frac{1}{2}m}{p_1}} = 0$$

0.3 An Aside on Cobb-Douglass

 $u = x_1^{\frac{1}{3}} x_2^{\frac{2}{3}}$

$$MRS = -\frac{\frac{\partial \left(x_1^{\frac{1}{3}} x_2^{\frac{2}{3}}\right)}{\partial x_1}}{\frac{\partial \left(x_1^{\frac{1}{3}} x_2^{\frac{2}{3}}\right)}{\partial x_2}} = -\frac{1}{2} \frac{x_2}{x_1}$$

This isn't the demand:

$$\left(\frac{\frac{1}{2}m}{p_1}, \frac{\frac{1}{2}m}{p_2}\right)$$

This is:

$$\left(\frac{\frac{\frac{1}{3}}{\frac{1}{3} + \frac{2}{3}}m}{p_1}, \frac{\frac{2}{3}}{\frac{1}{3} + \frac{2}{3}}m}{p_2}\right) = \left(\frac{\frac{1}{3}m}{p_1}, \frac{\frac{2}{3}m}{p_2}\right)$$

If we have: $x_1^{\alpha} x_2^{\beta}$

$$\left(\frac{\frac{\alpha}{\alpha+\beta}m}{p_1}, \frac{\frac{\beta}{\alpha+\beta}m}{p_2}\right)$$

 $x_1^2 x_1^1$

$$\left(\frac{\frac{2}{3}m}{p_1}, \frac{\frac{1}{3}m}{p_2}\right)$$

$$\frac{\alpha}{\alpha+\beta} + \frac{\beta}{\alpha+\beta} = 1$$

0.4 Classifications of Price Elasticity

Imagine we had a good for which $\varepsilon_{1,1} = -50$.

When price goes up by 1% demand drops by 50%.

Elastic Goods

When price elasticity is less than -1 demand reacts strongly to changes in price. We say that they are "Elastic".

Goods which have strong substitutes tend to be elastic. Goods that are not necessities.

Inelastic Goods

Price elasticity $\varepsilon_{1,1} > -1$.

Demand has a very weak reaction to a change in price.

$$\varepsilon_{1,1} = -0.01$$

Demand goes down by 0.01% when price goes up by 1%.

Gasoline. Medications. Things you are addicted to. Staple foods.

 $\varepsilon_{1,1} = -1$ "Unit elastic".