1 Monopoly

Under the price-taking assumption, this is the profit function for a firm (p is a fixed unit-price for output).

$$
\pi(q)=p q-c(q)
$$

1.1 Monopolies and the Price-Taking Assumption

Let's relax the price taking assumption, we will assume there is just one firm that produces the good.

Suppose demand is: $Q(p)=\frac{\frac{1}{2}(200)}{p}$ and there is one firm in a market.
The inverse demand function is:

$$
\begin{gathered}
q=\frac{100}{p} \\
p(q)=\frac{100}{q}
\end{gathered}
$$

This tells us the most consumers are willing to pay for quantity q of this good. The most this firm can charge to sell 100 units is 1 .

$$
p(100)=1
$$

Suppose they increase their quantity to 200.

$$
p(200)=\frac{100}{200}=0.50
$$

1.2 The Monopolist's Profit Function

We go from perfect competition

$$
\pi(q)=p q-c(q)
$$

Monopoly:

$$
\pi(q)=p(q) q-c(q)
$$

When we maximize this:

$$
\begin{gathered}
\frac{\partial(p(q) q-c(q))}{\partial q}=\frac{\partial p(q)}{\partial q} q+p(q)-\frac{\partial c(q)}{\partial q} \\
\frac{\partial p(q)}{\partial q} q+p(q)-\frac{\partial c(q)}{\partial q}=0
\end{gathered}
$$

1.3 Example of Maximizing Profit

Suppose demand is $q_{d}(p)=100-p$. Cost is $c(q)=10 q$.

$$
\begin{gathered}
q_{d}(p)=100-p \\
q=100-p
\end{gathered}
$$

The inverse demand:

$$
p(q)=100-q
$$

The profit function:

$$
\begin{gathered}
\pi(q)=(100-q) q-10 q \\
100 q-q^{2}-10 q \\
=90 q-q^{2}
\end{gathered}
$$

Find the maximum by looking for a q where marginal profit is zero:

$$
\begin{gathered}
\frac{\partial\left(90 q-q^{2}\right)}{\partial q}=90-2 q=0 \\
90=2 q \\
q=45 \\
\left(\begin{array}{ll}
20 & 1400 \\
30 & 1800 \\
40 & 2000 \\
45 & 2025 \\
50 & 2000 \\
55 & 1925
\end{array}\right)
\end{gathered}
$$

Plug the profit maximizing quantity into the inverse demand to get price:

$$
\begin{gathered}
p(45)=100-45=55 \\
q=45, p=55 \\
\pi(45)=2025
\end{gathered}
$$

1.4 Previous Example but Perfect Competition

$$
\begin{aligned}
& p q-10 q \\
& (p-10) q
\end{aligned}
$$

Suppose $p>10$, then all firms want to produce an infinite amount.
If $p<10$ then all firms want to produce 0 .
Both of these are unsatisfactory solutions to the problem. We are left to conclude the price in this market must end up being 10 .

$$
\begin{gathered}
p=10 \\
m c=10
\end{gathered}
$$

Relative to perfect competition, there is a sharp markup over marginal cost in the last example. For the monopoly:

$$
\frac{p}{m c}=\frac{55}{10}=5.5
$$

1.5 What does a monopoly do?

What we want to do is write the markup term in terms of elasticity. In the previous example the markup term is 5.5 , we want to see that this is driven by elasticity of demand.

$$
\begin{gathered}
\frac{\partial(p(q) q-c(q))}{\partial q}=0 \\
\frac{\partial p}{\partial q} q+p-m c=0
\end{gathered}
$$

Elasticity of demand: $\varepsilon=\frac{\partial q}{\partial p} \frac{p}{q} \cdot \frac{1}{\varepsilon}=\frac{\partial p}{\partial q} \frac{q}{p}$. If we divide both sides by p :

$$
\begin{gathered}
\frac{\partial p}{\partial q} \frac{q}{p}+1-\frac{m c}{p}=0 \\
\frac{1}{\varepsilon}+1=\frac{m c}{p}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1+\varepsilon}{\varepsilon}=\frac{m c}{p} \\
& \frac{p}{m c}=\frac{\varepsilon}{1+\varepsilon}
\end{aligned}
$$

Suppose $\varepsilon=-2$

$$
\frac{p}{m c}=\frac{-2}{1-2}=2
$$

In the previous example we had:

$$
\begin{gathered}
\frac{p}{m c}=5.5 \\
5.5=\frac{\varepsilon}{1+\varepsilon} \\
\varepsilon=-1.22222
\end{gathered}
$$

Notice of these examples involve the firm operating where demand is elastic. This is because a monopolist could never be maximizing profit where demand is inelastic.
If demand is inelastic, then to get quantity to decrease by 1% I have to raise price by more than 1%. If I decrease quantity by 1%, I can increase price by more than 1%.
If price goes up by more than 1% and demand goes down by 1%, the revenue has to go up.
If demand is inelastic, the firm can always get more revenue by decreasing quantity.
If I decrease quantity, cost also goes down.
Thus, revenue goes up, cost goes down and profit must increase if demand is inelastic. (This also works for unit-elastic demand).
Monopolists always operate in the "elastic portion" of the demand curve.

1.6 Example with constant elasticity of demand -1 .

Cost is $c(q)=q$

$$
q=\frac{100}{p}
$$

Elasticity of demand is $-1 . \frac{\partial\left(\frac{100}{p}\right)}{\partial p} \frac{p}{\frac{100}{p}}=-1$
Inverse demand:

$$
\begin{gathered}
p(q)=\frac{100}{q} \\
\pi(q)=q \frac{100}{q}-q \\
\pi(q)=100-q
\end{gathered}
$$

Technically this profit function is "maximized" at $q=0$

1.6.1 Checking Elastic Portion for Previous Example

1.7 In Action

Suppose a firm is charging $p=100$ and consumers have elasticity of demand -3 . What is the firms marginal cost?

$$
\begin{gathered}
\frac{p}{m c}=\frac{\varepsilon}{1+\varepsilon} \\
\frac{100}{m c}=\frac{-3}{1-3} \\
\frac{100}{m c}=\frac{-3}{-2} \\
\frac{100}{1.5}=m c \\
66.6667=m c
\end{gathered}
$$

1.8 Consumer Surplus Under Monopoly

As we saw above, suppose a firm had constant marginal cost of $c(y)=10 y$ and demand is $q=100-p$. Optimal quantity was $q=45$ and price is $p=55$.
Inverse demand is $p(q)=100-q$

