1 Monopoly Behavior

Suppose there are three people willing to pay $\$ 3, \$ 2, \$ 1$ for a good respectively. The firm has zero costs.

Price	\# Buyers	Profit
$\$ 3$	1	$\$ 3$
$\$ 2$	2	$\$ 4$
$\$ 1$	3	$\$ 3$

1.1 Types of Price Discrimination

First Degree- We charge everyone their willingness to pay.
What do I need? Know the exact willingness to pay of everyone. The ability to charge different. people different prices.
This is more of a baseline thought experiment. It doesn't really exist. Airline tickets is the closest example I can think of because everyone pays a different price.
Second Degree- You don't know anyone's willingness to pay, but you can create different "packages" that cost different amounts and let the consumers choose for themselves. The key here is self-selection.
Coach and first-class travel. Whiskey. Reserve wines. Car washes. Football tickets. Uber premium, uber black, etc.
Third Degree- There are different groups of people and on overage their willingness to pay is different. The groups can be identified and charged differently. Student tickets.
Bundling- This can be used when a firm sells more than one product. The firm forces people to buy a bundle of the products as some bundle price and does not allow them to buy the individual products.
Cable tv. Microsoft office.
Two Part Tariff- This requires that individuals demand more than one unit of a good. You charge them a low unit-cost and then soak up the consumer surplus with a upfront fee for the right to buy the good at a low unit cost.
Amusement parks. Free-coffee-for-the-month club.

1.2 First Degree Price Discrimination in Action

Get all of the consumer surplus possible and there is no dead-weight lost. All of the potential surplus from the market end up in the hands of the monopolist.

1.3 Third Degree Price Discrimination in Action

I'm using y for quantity instead of q.

Suppose there are two groups of people: students and non-students. A movie theater sells tickets to both groups. Assume the firm has zero marginal cost so that $c(y)=0$ (cost is zero regardless of output). Students have demand function: $y_{s}=100-2 p$ and non-students have demand function: $y_{n}=100-p$.
First, let's figure the optimal price to charge if we charge both groups the same price. (No price discrimination).
Total demand:

$$
\begin{gathered}
y=y_{s}+y_{n} \\
y=(100-2 p)+(100-p)=200-3 p
\end{gathered}
$$

The inverse demand:

$$
\begin{gathered}
p=\frac{200}{3}-\frac{1}{3} y \\
\pi(y)=\left(\frac{200}{3}-\frac{1}{3} y\right) y
\end{gathered}
$$

Maximize profit:

$$
\begin{gathered}
\frac{\partial\left(\left(\frac{200}{3}-\frac{1}{3} y\right) y\right)}{\partial y}=0 \\
\frac{200}{3}-\frac{2 y}{3}=0 \\
\frac{200}{3}=\frac{2 y}{3} \\
100=y
\end{gathered}
$$

Optimal amount of tickets to sell is 100. Plugging this into the inverse demand function gives the most I can charge to sell 100 tickets:

$$
\begin{gathered}
p=\frac{200}{3}-\frac{1}{3}(100) \\
p=\frac{100}{3}=33.3333 \\
\pi(y)=\frac{100}{3} 100=3333.33
\end{gathered}
$$

1.3.1 Price Discrimination: What to charge students?

Let's figure the most that the firm can earn from students if it sells y_{s} student tickets and charges them a price p_{s}.

$$
y_{s}=100-2 p
$$

Inverse demand:

$$
p=50-\frac{1}{2} y_{s}
$$

Profit from students:

$$
\pi\left(y_{s}\right)=\left(50-\frac{1}{2} y_{s}\right) y_{s}
$$

Maximize this:

$$
\begin{gathered}
\frac{\partial\left(\left(50-\frac{1}{2} y_{s}\right) y_{s}\right)}{\partial y_{s}}=50-y_{s} \\
50-y_{s}=0 \\
y_{s}=50
\end{gathered}
$$

Plug this into the inverse demand for students to get the price we can charge them:

$$
\begin{gathered}
p_{s}=\left(50-\frac{1}{2}(50)\right)=25 \\
\pi_{s}=1250
\end{gathered}
$$

1.3.2 Non-student market:

Demand:

$$
y_{n}=100-p
$$

Inverse demand

$$
p=100-y_{n}
$$

Profit:

$$
\begin{gathered}
\left(100-y_{n}\right) y_{n} \\
\frac{\partial\left(\left(100-y_{n}\right) y_{n}\right)}{\partial y_{n}}=100-2 y_{n} \\
100-2 y_{n}=0 \\
100=2 y_{n} \\
y_{n}=50
\end{gathered}
$$

To get the price, plug this into the non-student inverse demand:

$$
\begin{gathered}
p=100-50=50 \\
\pi_{n}=50 * 50=2500
\end{gathered}
$$

Total profit from both groups:

$$
2500+1250=3750
$$

The additional profit from price discrimination is:

