1 Technology

Just like consumer's have preferences, firm's have "technology". Technology is a description of how inputs turn into outputs.
Suppose we have a baker with the following technology: they turn 1 crust and 2 apples into 1 pie. We can represent this with a "vector" like this:
(crusts,apples,pies)

Make one pie from one crust and two apples

$$
(-1,-2,1)
$$

Make two pies from two crust and four apples

$$
(-2,-4,2)
$$

This way of expressing a technology is very flexible, but we won't have to worry so much about dealing with vectors like this. We can represent a technology with a production function.

1.1 Production Functions

Production function takes in amounts of two inputs and returns an amount of output.
$f\left(x_{1}, x_{2}\right)=y$
A production function works just like a utility function. The practical difference is that the "number" that represents the output is inherently meaningful (cardinal).

1.2 Isoquants

We visualized prefrences for consumers through the indifference curves. We visualize production function through the isoquants.
Isoquants: Bundles of inputs that produce the same output.
Here are some bundles that all produce one pie. They are on the same isoquant. They are on the isoquant for one pie.

$$
(1,2),(1,3),(2,2)
$$

Here are bundles on another isoquant:

$$
(2,4),(2,5),(3,4)
$$

Figure 1: Baker's Isoquants

1.3 Technical Rate of Substitution

The most important thing about an indifference curve is it's slope. Because it represents a tradeoff:
Consumer's the Marginal Rate of Substitution. How much x_{2} am I willing to give up if I consume one more unit of x_{1}.
Producer's the Technical Rate of Substitution. How much less x_{2} I can use if I use one more unit of x_{1}.

$$
T R S=-\frac{\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}}{\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{2}}}
$$

1.4 Marginal Products

$M P_{1}=\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}$ marginal product of input 1.
Roughly: How many more units of output will I get if I increase x_{1} by one unit? $M P_{2}=\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{2}}$ marginal product of input 2.
Roughly: How many more units of output will I get if I increase x_{2} by one unit?
$f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$

$$
\begin{aligned}
& M P_{1}=\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}=\frac{\partial\left(x_{1} x_{2}\right)}{\partial x_{1}}=x_{2} \\
& M P_{2}=\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}=\frac{\partial\left(x_{1} x_{2}\right)}{\partial x_{1}}=x_{1}
\end{aligned}
$$

1.5 Diminishing Marginal Product

Diminishing marginal product is the idea that adding one input while holding the other constant will increase productivity less and less as the input you are adding increases.
If we have wokers and zero tools, the first tool will make them much more productive. The second tool will make more productive but productivity increases less than the extra amount from the first tool.
This is Diminishing Marginal Product.
To check whether there is diminishing marginal product for x_{1} just check that $\frac{\partial\left(f\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}$ is decreasing in x_{1}.

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}} \\
\frac{\partial\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)}{\partial x_{1}}=\frac{\sqrt{x_{2}}}{2 \sqrt{x_{1}}} \\
\frac{\sqrt{x_{2}}}{2 \sqrt{x_{1}}}
\end{gathered}
$$

Decreasing in x_{1} since x_{1} is only in the denominator. If we wanted to see this formally, we need to check whether the second derivative negative.
Diminishing $M P$ if decreasing in that good.
Constant $M P$ if constant in that good.
Increasing $M P$ if increasing in that good.

$$
\begin{gathered}
m p_{1}=\frac{\partial\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)}{\partial x_{1}} \\
m p_{1}=\frac{\sqrt{x_{2}}}{2 \sqrt{x_{1}}}
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial\left(m p_{1}\right)}{\partial x_{1}}= & \frac{\partial\left(\frac{\sqrt{x_{2}}}{2 \sqrt{x_{1}}}\right)}{\partial x_{1}}=-\frac{\sqrt{x_{2}}}{4 x_{1}^{3 / 2}} \\
& -\frac{\sqrt{x_{2}}}{4 x_{1}^{3 / 2}}<0
\end{aligned}
$$

Thus, $x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}$ has diminishing marginal product for x_{1}.
Rule of thumb: for a cobb douglass production function, if the exponent is less than 1, the that production function has diminishing marginal product in that good.

$$
x_{1}^{\frac{1}{2}} x_{2}^{2}
$$

Diminishing marginal product of x_{1} and increasing marginal product of x_{2}.
Thus, this is increasing marginal product.

$$
\frac{\partial\left(x_{1}^{\frac{1}{2}} x_{2}^{2}\right)}{\partial x_{2}}=2 \sqrt{x_{1}} x_{2}
$$

1.6 Returns to Scale

Measures additional outputs when we scale both inputs at the same time.
Let's take the example of:

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Let's start at $f(1,1)=1$. If we double both inputs to $(2,2)$ we get four times the amount of output: $f(2,2)=4$
This is an example of increasing returns to scale.
Formally, this is the definition:
For $t>1$

Increasing returns to scale: $f\left(t x_{1}, t x_{2}\right)>t f\left(x_{1}, x_{2}\right)$
Constant returns to scale: $f\left(t x_{1}, t x_{2}\right)=t f\left(x_{1}, x_{2}\right)$
Decreasing returns to scale: $f\left(t x_{1}, t x_{2}\right)<t f\left(x_{1}, x_{2}\right)$

1.6.1 Example: Perfect Substitutes

$x_{1}+x_{2}$

$$
f\left(t x_{1}, t x_{2}\right)=\left(t x_{1}+t x_{2}\right)=t\left(x_{1}+x_{2}\right)=t f\left(x_{1}, x_{2}\right)
$$

1.6.2 Another Example

$\left(x_{1}+x_{2}\right)^{2}$

$$
f\left(t x_{1}, t x_{2}\right)=\left(t x_{1}+t x_{2}\right)^{2}=\left(t\left(x_{1}+x_{2}\right)\right)^{2}=t^{2}\left(x_{1}+x_{2}\right)^{2}
$$

For any $t>1$

$$
t^{2}\left(x_{1}+x_{2}\right)^{2}>t\left(x_{1}+x_{2}\right)^{2}
$$

Increasing returns to scale.

1.6.3 Rule of Thumb: Cobb Douglass

$$
x_{1}^{\alpha} x_{2}^{\beta}
$$

Increasing returns if $\alpha+\beta>1$
Constant returns if $\alpha+\beta=1$
Decreasing returns if $\alpha+\beta<1$

