1 Monopoly Behavior

1.1 Bundling

This is possible when a firm sells more than one type of thing. Bundling is when the firm forces people to buy a bundle of those things rather than allowing them to buy each individual product.
Cable Television, Microsoft Office

	Shirt	Pants	Both
Consumer 1	50	30	80
Consumer 2	10	80	90

Price Shirts.
If the firm sets a price at $\$ 10$, both buy. Revenue is $\$ 20$.
If price at $\$ 50$, one buys and revenue is $\$ 50$.
Pricing Pants.
If the firm sets a price at $\$ 30$, both buy. Revenue is $\$ 60$.
If they set a price of $\$ 80$, one buys and revenue is $\$ 80$.
Total Revenue from selling separately is $80+50=\$ 130$.
Pricing the Bundle.
At a price of $\$ 80$, both buy and revenue is $\$ 160$.

1.2 Two-Part Tariff

These are effective when consumers potentially buy more than one unit of a good.
For example, suppose each consumer's demand for coffee is $q=10-p$. The firm has zero cost for coffee.

Standard Pricing:

Profit function for coffee:
Inverse demand: $p=10-q$

$$
\begin{gathered}
\pi(q)=q(10-q) \\
\frac{\partial(q(10-q))}{\partial q}=10-2 q \\
10-2 q=0
\end{gathered}
$$

$$
\begin{aligned}
& q=5 \\
& p=5 \\
& \pi=25
\end{aligned}
$$

Two part tariff. Charge your marginal cost per cup. In this case, charge $p=0$. What is the most I can charge the consumer for the right to buy coffee at $p=0$? The most I can charge for this right is $\$ 50$. This earns the firm $\$ 50$ profit.

2 The Cournot Model of Competition

In the cournot model, there are N firms that each choose a quantity q_{i}. The goal of each firm is to maximize it's profit by choosing it's quantity, subject to the quantities chosen by the other firms.
Notation:
Firm i 's quantity: q_{i}
Total quantity: $Q=\sum_{i=1}^{N} q_{i}$
Total quantity from all firms except i : $Q_{-i}=\left(Q-q_{i}\right)$
The price in the market is determined by the most that consumer are willing to spend to by Q units.
The price in the market is $p(Q)$ where $p()$ is the inverse demand function.

$$
\pi_{i}\left(q_{i}, Q_{-i}\right)=q_{i} p(Q)-c\left(q_{i}\right)
$$

$Q_{-i}=Q-q_{i} . Q=Q_{-i}+q_{i}$

$$
\pi_{i}\left(q_{i}, Q_{-i}\right)=q_{i} p\left(Q_{-i}+q_{i}\right)-c\left(q_{i}\right)
$$

2.1 Example of Maximizing Profit with Two Firms

Suppose inverse demand is $p(Q)=100-Q$, there are two firms, and the cost function of each firm is $c\left(q_{i}\right)=10 q_{i}$.

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-10 q_{1} \\
& \pi_{2}\left(q_{2}, q_{1}\right)=q_{2}\left(100-\left(q_{2}+q_{1}\right)\right)-10 q_{2}
\end{aligned}
$$

2.1.1 Example firm 1 maximizing Profit

2.1.2 50 Units for Firm 2

Suppose firm 2 is known to be producing 50 units $q_{2}=50$

$$
\begin{gathered}
\pi_{1}\left(q_{1}, 50\right)=q_{1}\left(100-\left(q_{1}+50\right)\right)-10 q_{1} \\
\pi_{1}=q_{1}\left(100-\left(q_{1}+50\right)\right)-10 q_{1} \\
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+50\right)\right)-10 q_{1}\right)}{\partial q_{1}}=40-2 q_{1} \\
20=q_{1}
\end{gathered}
$$

If firm 2 produces 50 , firm 1 want's to produce 20 .

2.1.3 20 Units for Firm 2

$$
\begin{gathered}
\pi_{1}\left(q_{1}, 20\right)=q_{1}\left(100-\left(q_{1}+20\right)\right)-10 q_{1} \\
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+20\right)\right)-10 q_{1}\right)}{\partial q_{1}}=70-2 q_{1} \\
q_{1}=35
\end{gathered}
$$

2.2 Game Theory

Notice that firm 1's optimal decision depends on firm 2's decision and vise versa.
This is the realm of game theory which is the study of strategy.

2.3 Best Responses

Firm 1's Best Response to $q_{2}=50$ was $q_{1}=20$
Firm 1's Best Response to $q_{2}=20$ was $q_{1}=35$

2.4 Equilibrium

Is both firm choosing 50 reasonable? In this case both firms have incentive to change to 20 . This is not an equilibrium.
Is both choosing 20 a equilibrium? Either would have incentive to produce 35 . When it is the case that a pair of quantities are both best responses to the quantities chosen by the other, we same the game is in Nash Equilibrium.
Nash Equilibrium: A set of mutual best response.

2.5 Finding a Nash Equilibrium

Write down the best response functions.

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-10 q_{1} \\
& \pi_{2}\left(q_{2}, q_{1}\right)=q_{2}\left(100-\left(q_{2}+q_{1}\right)\right)-10 q_{2}
\end{aligned}
$$

Let's find optimal q_{1} for any q_{2}.

$$
\begin{gathered}
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-10 q_{1}\right)}{\partial q_{1}}=-2 q_{1}-q_{2}+90 \\
-2 q_{1}-q_{2}+90=0 \\
90-q_{2}=2 q_{1}
\end{gathered}
$$

Firm 1's best response:

$$
q_{1}=\frac{90-q_{2}}{2}
$$

Firm 2's best response:

$$
\begin{gathered}
\frac{\partial\left(q_{2}\left(100-\left(q_{2}+q_{1}\right)\right)-10 q_{2}\right)}{\partial q_{2}}=-q_{1}-2 q_{2}+90 \\
-q_{1}-2 q_{2}+90=0 \\
\frac{90-q_{1}}{2}=q_{2}
\end{gathered}
$$

$$
q_{2}=\frac{90-q_{1}}{2}
$$

Equilibrium is a set of mutual best responses. q_{1}, q_{2} such that q_{1} is a best response to q_{2} and q_{2} is a best response to q_{1}. Solve these simultaneously:

$$
\begin{gathered}
q_{1}=\frac{90-q_{2}}{2} \\
q_{1}=30, q_{2}=30
\end{gathered}
$$

2.6 Symmetric Equilibrium

$$
q=\frac{90-q}{2}
$$

Solve this for q :

$$
\begin{gathered}
q=\frac{90-q}{2} \\
2 q=90-q \\
3 q=90 \\
q=30
\end{gathered}
$$

