0.1 Tragedy of the Commons Example

Suppose $100 \sqrt{B}$ fish will be caught on a lake when B boats are fishing. Fish can be sold for $\$ 1$ but it costs $\$ 10$ to buy fuel and supplies to fish.
Fish caught per boat.

$$
\frac{100 \sqrt{B}}{B}
$$

Profit of each boat:

$$
\begin{gathered}
\frac{100 \sqrt{B}}{B}-10 \\
\pi(B)=\frac{100}{\sqrt{B}}-10 \\
\pi(1)=\frac{100}{1}-10=90 \\
\pi(2)=\frac{100}{\sqrt{2}}-10=60.7107 \\
\pi(3)=\frac{100}{\sqrt{3}}-10.0=47.735
\end{gathered}
$$

To find the individually-optimal entry of boats, we calculate the B that makes profit zero for all boats.

$$
\begin{gathered}
\frac{100}{\sqrt{B}}-10=0 \\
\frac{100}{\sqrt{B}}=10 \\
10=\sqrt{B} \\
B=100 \\
\pi(100)=\frac{100}{\sqrt{100}}-10=\frac{100}{10}-10=0 \\
\pi(101)=-0.0496281
\end{gathered}
$$

0.1.1 Socially Optimal

The level of entry that maximizes the joint profit of the boats:

$$
(100 \sqrt{B})-10 B
$$

We take the derivative with respect to B and find where marginal profit is zero:

$$
\begin{gathered}
\frac{\partial((100 \sqrt{B})-10 B)}{\partial B}=\frac{50}{\sqrt{B}}-10 \\
\frac{50}{\sqrt{B}}-10=0 \\
5=\sqrt{B} \\
B=25 \\
\frac{\partial(100 \sqrt{B})}{\partial B}=\frac{50}{\sqrt{B}}=10
\end{gathered}
$$

When 25 boats enter. Total profit is:

$$
\pi=250
$$

0.2 Optimal Fishing Fee

How can we get the boats to 25 ?
Let's have the government impose a fee for fishing f. We want to choose f such that the individually optimal number of boats is 25 .

$$
\begin{aligned}
& \frac{100 \sqrt{B}}{B}-10-f \\
& \frac{100}{\sqrt{B}}-10-f
\end{aligned}
$$

What does f need to be so that when $B=25$ profit is zero for all boats.

$$
\begin{gathered}
\frac{100}{\sqrt{25}}-10-f=0 \\
\frac{100}{5}-10-f=0 \\
20-10-f=0 \\
10-f=0 \\
f=10
\end{gathered}
$$

If the government imposes a fishing fee of 10 then 25 boats will enter.
The government earns $10 * 25=250$ revenue from the lake and all boats earn zero profit.

0.3 Positive Externalities - Public Goods

Suppose 100 people share a park and are asked to donate money to it. (A positive externality since everyone shares the park).
Each individual has income $m=1000000$ and their contribution is g_{i}.
The total contributions are $G=\sum_{i=1}^{100} g_{i}$. And for convenience, let $G_{-i}=G-g_{i}$. $u\left(g_{i}, G_{-i}\right)=\left(1000000-g_{i}\right)+100 \sqrt{G}=\left(1000000-g_{i}\right)+100 \sqrt{g_{i}+G_{-i}}$

What contribution maximizes each individuals utility?

$$
\begin{gathered}
\left(1000000-g_{i}\right)+100 \sqrt{g_{i}+G_{-i}} \\
\frac{\partial\left(\left(1000000-g_{i}\right)+100 \sqrt{g_{i}+G_{-i}}\right)}{\partial g_{i}} \\
\frac{\partial\left(1000000-g_{i}+100\left(g_{i}+G_{-i}\right)^{\frac{1}{2}}\right)}{\partial g_{i}}=-1+100 \frac{1}{2}\left(g_{i}+G_{-i}\right)^{-\frac{1}{2}} \\
=\frac{50}{\sqrt{g_{i}+G_{-i}}}-1
\end{gathered}
$$

To maximize utility find where the marginal utility is zero:

$$
\begin{gathered}
\frac{50}{\sqrt{g_{i}+G_{-i}}}-1=0 \\
\frac{50}{\sqrt{g_{i}+G_{-i}}}=1 \\
50=\sqrt{g_{i}+G_{-i}}
\end{gathered}
$$

Best response function:

$$
\begin{gathered}
2500-G_{-i}=g_{i} \\
2500=g_{i}+G_{-i} \\
2500=G
\end{gathered}
$$

In any equilibrium, the total contributions are 2500 . What is the symmetric equilibirum of this game. A g such that if everyone contributes g, it is a Nash equilibrium:

$$
\begin{gathered}
2500-(99 g)=g \\
2500=100 g \\
\frac{2500}{100}=g \\
25=g
\end{gathered}
$$

0.3.1 Social Optimum

The social optimum is a g such that if everyone contributes g, the utility of each person is maximized.

$$
\begin{gathered}
u\left(g_{i}, G_{-i}\right)=\left(1000000-g_{i}\right)+100 \sqrt{g_{i}+G_{-i}} \\
u(g, 99 g)=(1000000-g)+100 \sqrt{100 g}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial((1000000-g)+100 \sqrt{100 g})}{\partial g}=\frac{500}{\sqrt{g}}-1 \\
\frac{500}{\sqrt{g}}-1=0 \\
\frac{500}{\sqrt{g}}=1 \\
\sqrt{g}=500 \\
g=250000
\end{gathered}
$$

Utility of each individual when the government imposes a contribution of 250000 :

$$
\begin{gathered}
u(250000,99(250000))=(1000000-250000)+100 \sqrt{100(250000)} \\
=1250000
\end{gathered}
$$

When individuals decide how much to contribute they all choose 25 :

$$
u(25,99(25))=(1000000-250000)+100 \sqrt{100(250000)}=1004975
$$

