1 Cournot

1.1 Nash Equilibrium with Two Firms

Suppose inverse demand is $p(Q)=100-Q$, there are two firms, and the cost function of each firm is $c\left(q_{i}\right)=10 q_{i}$.

$$
\begin{gathered}
\pi\left(q_{i}, Q_{-i}\right)=q_{i}\left(100-q_{i}-Q_{-i}\right)-10 q_{i} \\
\frac{\partial\left(q_{i}\left(100-q_{i}-Q_{-i}\right)-10 q_{i}\right)}{\partial q_{i}} \\
\frac{\partial\left(q_{i} 100-q_{i}^{2}-q_{i} Q_{-i}-10 q_{i}\right)}{\partial q_{i}}=100-2 q_{i}-Q_{-i}-10 \\
=90-2 q_{i}-Q_{-i} \\
90-2 q_{i}-Q_{-i}=0
\end{gathered}
$$

Best Response:

$$
q_{i}=\frac{90-Q_{-i}}{2}
$$

If there are only two firms q_{1}, q_{2}

$$
\begin{aligned}
& q_{1}=\frac{90-q_{2}}{2} \\
& q_{2}=\frac{90-q_{1}}{2}
\end{aligned}
$$

Nash equilibrium occurs where both firms choose a quantity that is a best response to the other firm's quantity.
$q_{1}=30, q_{2}=50$
Is 30 a best response to 50 ?

$$
\begin{gathered}
30=\frac{90-50}{2} \\
30=20
\end{gathered}
$$

30 isn't a best response to 50 . What is the best response? 20 is.

$$
20=\frac{90-50}{2}
$$

We need to find a q_{1} and q_{2} that are mutual best responses.

$$
\begin{aligned}
& q_{1}=\frac{90-q_{2}}{2} \\
& q_{2}=\frac{90-q_{1}}{2}
\end{aligned}
$$

Plug q_{2} into q_{1} :

$$
\begin{gathered}
q_{1}=\frac{90-\left(\frac{90-q_{1}}{2}\right)}{2}=\frac{90-45+\frac{1}{2} q_{1}}{2} \\
q_{1}=\frac{45}{2}+\frac{1}{4} q_{1} \\
\frac{3}{4} q_{1}=\frac{45}{2} \\
q_{1}=30
\end{gathered}
$$

Plug this back into best response for q_{2}

$$
q_{2}=\frac{90-30}{2}=\frac{60}{2}=30
$$

The only nash equilibrium is $(30,30)$.
This is a symmetric nash equilibrium, because both firms choose the same quantity.

$$
q_{1}=q_{2}=q
$$

Suppose we limit our search for equilibrium to symmetric nash equilibrium.

$$
\begin{aligned}
& q=\frac{90-q}{2} \\
& q=\frac{90-q}{2}
\end{aligned}
$$

When we impose symmetry, there is now only one equation to solve:

$$
\begin{gathered}
q=\frac{90-q}{2} \\
2 q=90-q \\
3 q=90 \\
q=30
\end{gathered}
$$

1.2 Equilibrium with N firms.

This is the generic best response function:

$$
q_{i}=\frac{90-Q_{-i}}{2}
$$

Let's suppose all firms choose $q_{i}=q$

$$
\begin{gathered}
Q=\sum_{i=1}^{n} q=n q \\
Q_{-i}=Q-q_{i}=n q-q=(n-1) q \\
q=\frac{90-(n-1) q}{2} \\
2 q=90-(n-1) q \\
(n-1) q+2 q=90 \\
(n+1) q=90 \\
q=\frac{90}{n+1}
\end{gathered}
$$

For 2 firms:

$$
q=\frac{90}{3}=30
$$

Firm 9 firms:

$$
q=\frac{90}{10}=9
$$

Market quantity:

$$
Q=n q=\frac{n}{n+1} 90
$$

Market price (inverse demand evalutaed at Q)

$$
p(Q)=100-\frac{n}{n+1} 90
$$

Profit of each firm:

$$
\pi=\frac{90}{n+1}\left(100-\frac{n}{n+1} 90\right)-10\left(\frac{90}{n+1}\right)
$$

Let's look at these for various N :

$$
\left(\begin{array}{ccccc}
2 . & 30 . & 60 . & 40 . & 900 . \\
3 . & 22.5 & 67.5 & 32.5 & 506.25 \\
5 . & 15 . & 75 . & 25 . & 225 . \\
10 . & 8.18182 & 81.8182 & 18.1818 & 66.9421 \\
100 . & 0.891089 & 89.1089 & 10.8911 & 0.79404 \\
1000 . & 0.0899101 & 89.9101 & 10.0899 & 0.00808382
\end{array}\right)
$$

In perfect competiion price $=$ marginal cost. $m c=10 . c(q)=10 q$ For a monopolist:

$$
\begin{gathered}
\frac{\partial(q(100-q)-10 q)}{\partial q}=90-2 q \\
45=q
\end{gathered}
$$

This is also the solution we get in the cournot model when we set $n=1$.

2 Collusion and Cooperation

Suppose inverse demand is $p(Q)=100-Q$, there are two firms, and the cost function of each firm is $c\left(q_{i}\right)=10 q_{i}$.

$$
\begin{aligned}
& \pi\left(q_{1}, q_{2}\right)=q_{1}\left(100-q_{1}-q_{2}\right)-10 q_{1} \\
& \pi\left(q_{2}, q_{1}\right)=q_{2}\left(100-q_{1}-q_{2}\right)-10 q_{2}
\end{aligned}
$$

In equilibrium, both firms choose $q=30$ and $Q=60 . \pi=30(100-60)-$ $10(30)=900$
Suppose the firms agree to maximzie their profits by choosing a non-equilibrium q :

$$
\begin{gathered}
\pi(q, q)=q(100-q-q)-10 q \\
\frac{\partial(q(100-q-q)-10 q)}{\partial q}=90-4 q \\
\frac{90}{4}=q \\
q=22.5 \\
p(Q)=100-2(22.5)=55 . \\
\pi=22.5(55)-10(22.5)=1012.5
\end{gathered}
$$

They earn 112.5 more than in equilibrium.
This is an equilibrium, either firm can earn even more by best responding with:

$$
q=33.75
$$

2.1 A Basic Example

2.2 Prisoner's Dilemma

	cooperate	defect
cooperate	4,4	$0, \mathbf{1 0}$
defect	$\mathbf{1 0}, 0$	$\mathbf{2 , 2}$

Figure 1: A simplified prisoner's dilemma game.

