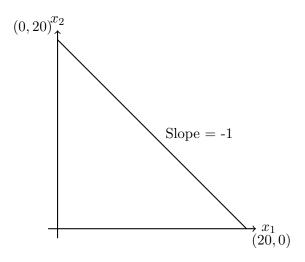
Econ 3100	Midterm,
Spring 20	25
(100 points	s)

Name:			
Danie.			


Write your answers in the space provided.

- 1. Fill in the blanks:
 - (a) (4 points) An inferior good is one for which demand decreases when income increases.
 - (b) (4 points) A rational preference relation is one that is **complete** and **transitive**.
 - (c) (4 points) A consumer's **marginal rate of substitution** measures the amount of one good they are willing to give up to get more of another.
 - (d) (4 points) If a consumer prefers the bundle (3,3) to (4,4), their preferences **are not** monotonic.
- 2. Consider the following rational preference relation on the set $\{a, b, c\}$:

$$a \succsim a$$
, $b \succsim b$, $c \succsim c$, $b \succsim a$, $b \succsim c$, $c \succsim a$, $c \succsim b$.

- (a) (4 points) Is this preference relation complete? Yes.
- (b) (4 points) Write the strict preference relation \succ . $b \succ a, c \succ a$
- (c) (4 points) Write the indifference relation \sim . $a \sim a, b \sim b, c \sim c, b \sim c$
- (d) (4 points) Write the preferences in chain notation. $b \sim c \succ a$
- (e) (4 points) What is **best** from the set $\{a, b\}$?

- 3. A consumer has utility function $U(x_1, x_2) = 3x_1 + 2x_2$. Income is m = 20. Initially, prices are $p_1 = 1, p_2 = 1$.
 - (a) (4 points) Sketch the consumer's budget line, label the **end-points** and the **slope**.

- (b) (4 points) What is the consumer's Marginal Rate of Substitution? $-\frac{3}{2}$
- (c) (4 points) What bundle (x_1, x_2) does the consumer demand? (20,0)
- (d) (4 points) Suppose the price p_1 changes to $p_1 = 2$. Now what bundle (x_1, x_2) does the consumer demand? (0, 20)
- (e) (4 points) Of the change in demand due to this price change, how much is due to the substitution effect?

 20
- (f) (4 points) Of the change in demand due to this price change, how much is due to the income effect? 0

- 4. A consumer has utility for consumption in period 1 c_1 and consumption in period 2 given by $U(c_1, c_2) = min\{c_1, c_2\}$. Their income in period 1 is $m_1 = 1000$ and their income in period 2 is $m_2 = 2000$. The interest rate is r = 0.5.
 - (a) (4 points) Write the consumer's budget equation. $1.5c_1 + c_2 = 3500$
 - (b) (4 points) How much consumption can they have in period 2 if they only consume in period 2? 3500
 - (c) (4 points) What is this consumer's optimal choice of (c_1, c_2) ? $c_1 = 1400, c_2 = 1400$
 - (d) (4 points) Is the consumer a borrower / saver / neither? Borrower
 - (e) (4 points) If the interest rate decreased to r = 0.25 is the consumer a borrower / saver / neither? Borrower
- 5. Suppose someone's utility function is $U(x_1, x_2) = x_1 x_2$.
 - (a) (4 points) What is their Marginal rate of substitution? $-\frac{x_2}{x_1}$
 - (b) (4 points) Write down an equation that implies that the slope of the budget equation is the same as their indifference curve at the point (x_1, x_2) . (Hint: This is the "Tangency" condition.) $-\frac{x_2}{x_1} = -\frac{p_1}{p_2}$
 - (c) (4 points) For this consumer, $(2,4) \sim (4,2)$. What is another bundle that is indifferent to (2,4) and (4,2)? (8,1) or (1,8) or $(\sqrt{8},\sqrt{8})$ among others.
 - (d) (4 points) What is the convex combination of the bundles (4,2) and (2,4) if the weight on the bundle (4,2) is $t=\frac{1}{2}$? (3,3)
 - (e) (4 points) How does the bundle you found in part d compare to (2,4) and (4,2)? Does this violate convexity or not?
 (3,3) ≻ (2,4) and (3,3) ≻ (4,2). This does not violate convexity.