EXERCISES CHAPTER 12

Exercise 1. For each production function, what are two other bundles on the same isoquant as the bundle (4,4)?

- (a) $f(x_1, x_2) = 3x_1 + 2x_2$
- (b) $f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$ (c) $min\{x_1, x_2\}$

Exercise 2. For each of the following production functions, determine the marginal product of x_1 and x_2 .

- (a) $f(x_1, x_2) = 3x_1 + 2x_2$
- (b) $f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$ (c) $f(x_1, x_2) = x_1 x_2$ (d) $f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{4}}$

Exercise 3. For each of the following production functions, determine whether the production functions has decreasing marginal product for x_1 . What about x_2 ?

- (a) $f(x_1, x_2) = 3x_1 + 2x_2$
- (b) $f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$
- (c) x_1x_2
- (d) $f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{4}}$

Exercise 4. For each of the following production functions, if both inputs are increased by t > 1, does output change by more, less, or exactly t? Does this suggest the production function has increasing, decreasing, or constant returns to scale?

- (a) $f(x_1, x_2) = 3x_1 + 2x_2$

- (b) $f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$ (c) $f(x_1, x_2) = x_1 x_2$ (d) $f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{4}}$

Exercise 5. For each of the following production functions, derive the technical rate of substitution (TRS) between x_1 and x_2 :

1

- (a) $f(x_1, x_2) = 3x_1 + 2x_2$
- (b) $f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$ (c) $f(x_1, x_2) = x_1 x_2$
- (d) $f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{4}}$