EXERCISES CHAPER 3.

Chapter 3

Exercise 1. Consider the preference relation that describes someone's preferences over left \$1\$ and right \$r\$ shoes, where they only care about the number of usable pairs of shoes they consume. Sketch the indifference curves $\sum_{sim(1,1)}$ and $\sum_{sim(2,2)}$ on graph that has \$1\$ on the x-axis and \$r\$ on the y-axis. Label the set $\sum_{sim(2,2)}$.

Exercise 2. Consider the preference relation that describes someone's preferences for red apples \$r\$ and green apples \$g\$, where they only care about the total number of apples they have but not the color. Sketch the indifference curves $\sum (1,1)$ and $\sum (2,2)$ on graph that has \$r\$ on the x-axis and \$g\$ on the y-axis. Label the set $\sum (2,2)$.

Exercise 3. Write the following preference relations in \textbf{chain notation}.

- $a \succsim b, a \succsim c, b \succsim a, b \succsim c, c \succsim a, c \succsim b, a \succsim a, b \succsim b, c \succsim c$
- $a \succeq b, a \succeq c, b \succeq a, b \succeq c, a \succeq a, b \succeq b, c \succeq c$
- $a \succeq b, a \succeq c, a \succeq d, b \succeq c, b \succeq d, c \succeq b, c \succeq d, a \succeq a, b \succeq b, c \succeq c, d \succeq d$

Exercise 4. Write the strict preference relation \$\succ\$ induced by each of the following weak preference relations:

- $p \succsim p, q \succsim q, r \succsim r, p \succsim q, q \succsim r, p \succsim r$
- $p \succsim p, q \succsim q, r \succsim r, p \succsim q, q \succsim p, q \succsim r, r \succsim q, p \succsim r, r \succsim p$

Exercise 5. Write the indifference relation \sim induced by each of the following weak preference relations:

- (1) $p \gtrsim p, q \gtrsim q, r \gtrsim r, p \gtrsim q, q \gtrsim r, p \gtrsim r$
- (2) $p \succeq p, q \succeq q, r \succeq r, p \succeq q, q \succeq p, q \succeq r, r \succeq q, p \succeq r, r \succeq p$

Exercise 6. Consider this preference relation on $\{a,b,c,d\}$: $a \succeq b, a \succeq c, a \succeq d, b \succeq c, b \succeq d, c \succeq b, c \succeq d, a \succeq a, b \succeq b, c \succeq c, d \succeq d$. What is best from each set?

- $(1) \{a, b, c, d\}$
- $(2) \{b, c, d\}$
- $(3) \{c,d\}$

1

Exercise 7. A hiker's preferences over locations (x_1, x_2) are represented by how close (distance) they get to the summit of a mountain, which is at the point (5,5). They are indifferent between two points that are the same distance from (5,5). For example $(4,5) \sim (5,4)$ since both are distance 1 from (5,5). On the other hand, $(4,5) \succ (4,4)$ since (4,5) is 1 mile away while (4,4) is $\sqrt{(5-4)^2 + (5-4)^2} = \sqrt{2}$ away. Are these preferences complete? Are they transitive?

Exercise 8. For the hiker's preferences in the last question, sketch the indifference curve that includes the point (4,5) and the indifference curve that includes the point (3,5). Shade the set $\succeq (4,5)$.