EXERCISES CHAPTER 6

Exercise 1. Suppose that prices are $p_1 = 1$, $p_2 = 2$ and income is m = 60. Utility is $u(x_1, x_2) = x_1 + x_2$.

- a) What is the slope of this consumer's indifference curves? Interpret this number.
- b) What is the slope of their budget line? Interpret this number.
- c) Given these interpretaions, describe why their optimal bundle involves consuming only one of the two goods.
- d) What is their optimal bundle?

Exercise 2. Suppose that prices are $p_1 = 5$, $p_2 = 2$ and income is m = 60. Their utility $u(x_1, x_2) = 2x_1 + 5x_2$.

- a) What is this consumer's utility of spending all their money on good one?
- b) What is their utility of spending all their money on good two?
- c) What utility do they get if they spend half of their money on each good?

Exercise 3. Suppose that prices are $p_1 = 1, p_2 = 2$ and income is m = 60. Their utility is $u(x_1, x_2) = min\{x_1, x_2\}$.

- a) Write down the "no waste condition" for this consumer.
- b) Write down the equation for the budget line for this consumer.
- c) What is their optimal bundle?

Exercise 4. Suppose that prices are $p_1 = 1, p_2 = 2$ and income is m = 60. Their utility function is $u(x_1, x_2) = max\{x_1, x_2\}$. Find their optimal bundle. Use your intuition based on what you know about these preferences from studying them in previous problems.

Exercise 5. Suppose that prices are $p_1 = 1, p_2 = 2$ and income is m = 60. Their utility is $u(x_1, x_2) = x_1 x_2$.

- a) What is the slope of the consumer's indifference curves (MRS)?
- b) What is the slope of their budget line?
- c) Write an equation that implies that their indifference curve is tanget to their budget line.
- d) What bundle on their budget line meets the condition above? That is, it solves their budget equation and the condition above.
- e) How does the utility of this bundle compare to the utility of buying all x_1 or all x_2 ?
- f) What is their optimal bundle?

Exercise 6. A rectangle has area w * h and perimeter 2w + 2h. Suppose you have to draw a rectangle that has perimeter 20.

- a) Write the perimeter constraint as a budget constraint.
- b) What w, h maximize the area?

1

Exercise 7. Suppose that prices are $p_1 = 1, p_2 = 2$ and income is m = 60. Find the optimal bundle if $u(x_1, x_2) = x_1^2 + x_2^2$.

- a) What is the slope of the consumer's indifference curves (MRS)?
- b) What is the slope of their budget line?
- c) Write an equation that implies that their indifference curve at a bundle is tanget to their budget line.
- d) What bundle on their budget line meets the condition above? That is, it solves their budget equation and the condition above.
- e) How does the utility of this bundle compare to the utility of buying all x_1 or all x_2 ?
- f) What is their optimal bundle?

Exercise 8. A consumer makes pies. x_1 is apples and x_2 is crusts. It requires 2 apples and 1 crust to make a pie. They only care about the number of pies they make so their preferences are represented by $min\left\{\frac{1}{2}x_1,x_2\right\}$. Their income is m=60.

- a) If prices are $p_1 = 1$, $p_2 = 2$. What is their optimal bundle?
- b) The grocery store starts a promotion. You get 10 apples for free if you buy two crusts. Sketch their budget set.
- c) What is their optimal bundle? Add the indifference curve that includes the optimal bundle on your sketch above.

Exercise 9. A consumer's utility function is $ln(x_1) + ln(x_2) + ln(x_3)$. Prices are $p_1 = 1, p_2 = 1, p_3 = 2$. Income is m = 60.

- a) Set up their Lagrangian. Remember to think of a version of their utility function that is penalized by λ for every dollar they spend more than their income.
- b) Find the first order conditions where the partial derivative of the lagrangian is 0 for x_1, x_2, x_3, λ .
- c) Solve these equations to get the optimal bundle.

Try these at home.

Exercise 10. Suppose that prices are $p_1 = 1$, $p_2 = 2$ and income is m = 60. Their utility is $u(x_1, x_2) = 2x_1 + 5x_2$.

- a) What is this consumer's utility of spending all their money on good one?
- b) What is their utility of spending all their money on good two?
- c) What utility do they get if they spend half of their money on each good?
- d) What is their optimal bundle?

Exercise 11. A consumer's utility function $min\{x_1, x_2, x_3\}$. Prices are $p_1 = 1, p_2 = 1, p_2 = 2$. Income is m = 60. What is their optimal bundle?

Exercise 12. A consumer's utility function $max\{x_1, x_2, x_3\}$. Prices are $p_1 = 1, p_2 = 2, p_2 = 3$. Income is m = 60. What is their optimal bundle?

Exercise 13. A consumer's utility function is $min\{x_1, \frac{1}{3}x_2\}$. Prices are $p_1 = 1, p_2 = 1$. Income is m = 60. What is their optimal bundle?

Exercise 14. A consumer's utility function is $x_1^{\frac{1}{3}}x_2^{\frac{3}{3}}$. Prices are $p_1=1, p_2=1$. Income is m=60. What is their optimal bundle?