1 Preferences

Weak Preference.

 $(2,0) \succeq (1,0)$ Strict Preference $(2,0) \succeq (1,0), (1,0) \not\gtrsim (2,0)$ $(2,0) \succ (1,0)$

Indifference

 $\left(1,0\right)\succsim\left(0,1\right),\left(0,1\right)\succsim\left(1,0\right)$

 $(1,0) \sim (0,1)$

For a complete relation, for any pair of things, either one is strictly prefered to the other or they are indifferent.

a, b either $a \succeq b$ or $b \succeq a$ or both.

1.1 Representing Preferences

1.2 Example

$$\begin{split} a \succeq b, b \succeq c, a \succeq c, a \succeq a, b \succeq b, c \succeq c \\ a \sim a, b \sim b, c \sim c \\ a \succ b, a \succ c, b \succ c \end{split}$$
Chain Notation: $a \succ b \succ c$

1.3 Example 2

 $\begin{aligned} a \succeq a, a \succeq b, a \succeq c, a \succeq d, a \succeq e \\ b \succeq b, b \succeq a, b \succeq c, b \succeq d, b \succeq e \\ c \succeq c, c \succeq d, c \succeq e \\ d \succeq d, d \succeq c, d \succeq e \\ e \succeq e \\ a \sim b \succ c \sim d \succ e \end{aligned}$

1.3.1 Chain Notation

$$\begin{split} a \succ b \succ c \sim d \sim e \succ f \sim g \\ \{a, b, c, d, e, f, g\} \text{ what is/are best? } a \\ \{c, e, f, g\} \text{ what is/are best? } c, e \end{split}$$

 $\{b, c, e, f, g\}$ what is/are best? b

1.4 Exercise 3.3

A)
$$a \sim b \sim c$$

B) $a \sim b \succ c, b \sim a \succ c$

1.5 Induced Sets

1.5.1 Indifference Set (Indifference Curve)

The indifference set of a particular bundle x are all the other bundles that are indifferent to it.

Formally, in set theory, we would write it this way:

$$\sim (x) = \{y | y \in X, y \sim x\}$$

Remy doesn't care about ice cream flavor he just wants more ice cream.

 $(2,0) \succ (1,0), (2,0) \sim (0,2), (2,2) \sim (4,0)$

What are some elements of $\sim (1, 1)$?

$$(2,0) \in \sim (1,1), (0,2) \in \sim (1,1), (1.5,0.5) \in \sim (1,1)$$

$$(0.5, 1.5) \in \sim (1, 1)$$

Any bundle (x_1, x_2) where $x_1 + x_2 = 2$ is in the indifference set.

The indifference set $\sim (1, 1)$ also known as the indifference curve containing (1, 1) is a line with slope of -1 through the bundle (1, 1).

1.5.2 Strictly Prefered Set

The bundles that are strictly better than a bundle x are called the **strictly** prefered set and denoted $\succ (x)$

$$\succ (x) = \{y | y \in X, y \succ x\}$$

 $\succ (1,1)$

$$(3,0) \in \succ (1,1), (2,2) \in \succ (1,1)$$

1.5.3 Weakly Prefered Set

The bundles that are weak better than a bundle x are called the **weakly prefered set** and denoted $\succeq (x)$

$$\gtrsim (x) = \{y | y \in X, y \succeq x\}$$
$$\succeq (x) = \sim (x) \cup \succ (x)$$

1.5.4 Another Example

Suppose a consumer only consumes left and right shoes, and they only care about the number of useable pairs of shoes they have.

$$(1,1) \succ (0,0)$$

 $(2,1) \sim (1,1)$

Because (2,1) is still only one **useable** pair of shoes.

$$(1,10) \sim (1,1)$$

Plot $\sim (1,1)$ (all the bundles indifferent to (1,1).

1.5.5 Marginal Rate of Substitution

The slope of an indifference is called the **marginal rate of substitution** (MRS)

The MRS is the amount of good 2 the consumer would be willing to give up to get one more unit of good 1.