1 Cobb Douglass Demand

 $x_1^\alpha x_2^\beta$

$$\frac{\partial \left(x_1^{\alpha} x_2^{\beta}\right)}{\partial x_1} = \alpha x_1^{\alpha - 1} x_2^{\beta} = \alpha x_1^{\alpha} x_2^{\beta} x_1^{-1}$$
$$\frac{\partial \left(x_1^{\alpha} x_2^{\beta}\right)}{\partial x_2} = \beta x_1^{\alpha} x_2^{\beta - 1} = \beta x_1^{\alpha} x_2^{\beta} x_2^{-1}$$
$$MRS = -\frac{\alpha x_1^{\alpha} x_2^{\beta} x_1^{-1}}{\beta x_1^{\alpha} x_2^{\beta} x_2^{-1}} = -\frac{\alpha}{\beta} \frac{x_1^{-1}}{x_2^{-1}} = -\frac{\alpha}{\beta} \frac{x_2}{x_1}$$
$$MRS = -\frac{\alpha}{\beta} \frac{x_2}{x_1}$$
$$-\frac{\alpha}{\beta} \frac{x_2}{x_1} = -\frac{p_1}{p_2}$$

 $p_1 x_1 + p_2 x_2 = m$

Solving these together:

$$x_1 = \frac{rac{lpha}{lpha+eta}m}{p_1}, x_2 = rac{rac{eta}{lpha+eta}m}{p_2}$$

2 One more Slutsky Decomposition $x_1^3 x_2^1$

$$x_1 = \frac{\frac{3}{4}m}{p_1}, x_2 = \frac{\frac{1}{4}m}{p_2}$$

 $m = 480, p_1 = 1, p_2 = 1$ p_2 increases to $p_2 = 2$. Find the original bundle:

$$x_1 = \frac{\frac{3}{4}480}{1} = 360, x_2 = \frac{\frac{1}{4}480}{1} = 120$$
(360, 120)

Bundle after the price change:

$$x_1 = \frac{\frac{3}{4}480}{1} = 360, x_2 = \frac{\frac{1}{4}480}{2} = 60$$

(360, 60)

Total effect of the price change is a 60 unit decrease in demand for good 2.

The substitution effect is measured by the consumers change in demand from the original bundle under the new price but if they had **enough income** to buy original bundle.

The cost of the original bundle under the new prices:

$$\tilde{m} = 360 * 1 + 120 * 2 = 600$$

 $p_1 = 1, p_2 = 2, \tilde{m} = 600$

$$x_1 = \frac{\frac{3}{4}600}{1} = \frac{1800}{4} = 450, x_2 = \frac{\frac{1}{4}600}{2} = \frac{600}{8} = 75$$

(450, 75)

Originally they bought 120 x_2 and they buy 75 under this thought experiment.

$$75 - 120 = -45$$

Since the total effect if a decrease of 60 and the substitution effect is a decrease of 45, the income effect must be a decrease of 15.

3 Buying and Selling

Up until now, income is exogenous. "Determined outside of the model".

We want to endogenize income. "Make it part of the model. Have income depend on prices."

3.1 Income to Endowments

(income) $m \to (w_1, w_2)$ (endowments)

An endowment is an amount of x_1 and x_2 that the consumer starts with.

 x_1 apples, x_2 crusts.

 $(w_1, w_2) = (20, 0)$ says "the consumer starts with 20 apples"

 $(w_1, w_2) = (0, 10)$ says "the consumer starts with 10 crsuts"

The endowments are the "stuff" the consumer brings to model to sell in order to earn their income.

 $(w_1, w_2) = (5, 10)$ the consumer starts with 5 x_1 and 10 x_2 .

3.2 The budget equation

(20,0) how much is this endowment worth?

 $p_1 = 1, p_2 = 1$

$$20 * p_1 + 0 * p_2 = 20p_1 = 20$$

 $p_1 = 2, p_2 = 1$

$$20 * p_1 + 0 * p_2 = 20p_1 = 40$$

What can the consumer afford?

$$p_1 x_1 + p_2 x_2 \le m$$

Replace m with the value of the consumer's endowment:

$$p_1x_1 + p_2x_2 \le p_1w_1 + p_2w_2$$

Budget Line:

$$p_1 x_1 + p_2 x_2 = p_1 w_1 + p_2 w_2$$

In the case of $p_1 = 1, p_2 = 1, w_1 = 20, w_2 = 0$

$$x_1 + x_2 = 20$$

Suppose p_1 changes to 2.

$$2x_1 + x_2 = 40$$

3.3 Graphing Budget

The budget line will always include (w_1, w_2) .

Slope of the budget line is $-\frac{p_1}{p_2}$.

When a price changes, the slope of the budget line will change, but the line will pivot through the point (w_1, w_2) .

3.4 Net Buyer/Seller

If $x_i > w_i$ net buyer of good i

If $x_i < w_i$ net seller of good i

3.5 Gross/Net Demand

 (x_1, x_2) "bundle you want" gross demand

 $(x_1 - w_1, x_2 - w_2)$ net demand. Difference between gross demand and endowment.

 $(w_1, w_2) = (5, 5), (x_1, x_2) = (10, 0)$

Gross demand is $x_1 = 10, x_2 = 0$

Net demand is $x_1 - w_1 = 10 - 5 = 5$, $x_2 - w_2 = 0 - 5 = -5$

When net demand is positive, the consumer is a **buyer** of that good.

When net demand is negative, the consumer is a seller of that good.

If you are a buyer of one good, you have to be a seller of the other.

3.5.1 Changing Prices and Net Buyers/Sellers

If a consumer is a **seller** of a good, and the price of that good **goes up**:

1. The consumer **remains a net seller.**

2. They are strictly better off.

If a consumer is a **buyer** of a good, and the price of that good **goes down**:

1. The consumer **remains a net buyer.**

2. They are strictly better off.

3.5.2 Example

 $min\left\{\frac{1}{2}x_1, x_2\right\} p_1 = 1, p_2 = 1, w_1 = 120, w_2 = 0$