1 Equilibrium

Partial Equilibrium- Study of a single market in isolation. Where do prices come from?

1.1 Supply and Demand

Demand: what is the quantity consumers want at a particular market price pSupply : what is the quantity firms produce at a particular market price p $Q_d(p) = \frac{2500}{p}, Q_s(p) = 100p$

1.2 Example of Out-of-Equilibrium Prices

Suppose p = 10

 $Q_d(10) = \frac{2500}{10} = 250, Q_s(10) = 100p = 1000$

Here, there is an over supply. Supply is 1000 and demand is 250.

There is a **downward pressure** on prices. Any of the firms with unsold units have an incentive to try and sell them at a lower price.

Suppose p = 1 $Q_d(1) = \frac{2500}{1} = 2500, Q_s(1) = 100$

There is an over-demand for this good.

There is an **upward pressure** on prices as consumers who currently don't get to buy the good can convince firms who are not currently producing to produce at a higher price.

1.3 Equilibrium

An equilibrium is a stable state. A state with no tendency for change.

In partial equilibrium, a stable state (an **equilibrium)** occurs where quantity demand is equal to quantity supplied:

An equilibrium is p^* such that

$$Q_d\left(p^*\right) = Q_s\left(p^*\right)$$

At p^* there is no tendency for the price to rise of fall. It is a stable state.

1.4 Example

 $Q_d(p) = \frac{2500}{p}, Q_s(p) = 100p$ p = 1 is too low. p = 10 is too high.

$$Q_d (p^*) = Q_s (p^*)$$
$$\frac{2500}{p} = 100p$$
$$2500 = 100p^2$$
$$25 = p^2$$
$$p^* = 5$$

Equibbrium quantity:

$$Q_d(5) = \frac{2500}{5} = 500, Q_s(5) = 100(5) = 500$$

 $Q^{*} = 500$

1.4.1 Fixed Supply Example

 $Q_d(p) = \frac{500}{p}, Q_s(p) = 1000$

$$Q_d (p^*) = Q_s (p^*)$$
$$\frac{500}{p} = 1000$$
$$p^* = \frac{1}{2}$$
$$Q^* = 1000$$

1.4.2 Linear Demand Example

 $Q_d(p) = 300 - 50p, Q_s(p) = 100p$

$$300 - 50p = 100p$$

```
300 = 150p
2 = p^*
Q_s(2) = 200, Q_d(2) = 200
```

$$p^* = 2, Q^* = 200$$

1.4.3 Graphing Equilibrium

 $Q_d(p) = 300 - 50p, Q_s(p) = 100p$

Inverse demand tells us "what price would be responsible for consumers buying Q units of the good?".

To find inverse demand, write the demand function, then isolate p.

$$Q = 300 - 50p$$
$$50p = 300 - Q$$
$$p = \frac{300}{50} - \frac{1}{50}Q$$
$$p = 6 - \frac{1}{50}Q$$

What price is responsible for consumers buying 200 units?

$$p = 6 - \frac{1}{50}200 = 6 - \frac{200}{50} = 6 - 4 = 2$$

Inverse Supply Curve

Start with the supply function.

$$Q = 100p$$

Isolate price.

$$p = \frac{Q}{100}$$

1.4.4 Surplus

Surplus is a way of quantifying (in terms of dollars) how well off consumers and producers are because a market exists.

Consumer Surplus.

The area under the inverse demand curve but above the price.

Producer Surplus.

The area above the inverse supply curve but below price.

Remeber. The area of a triangle is $\frac{1}{2}b * h$.

In our example:

$$CS = \frac{1}{2} * (6-2) * 200 = \frac{1}{2} * 4 * 200 = 400$$
$$PS = \frac{1}{2} * 2 * 200 = 200$$

Total surplus (TS) : CS + PS

TS = 400 + 200 = 600

The equilibrium total surplus is ${\bf the\ most}$ surplus that be generated by a market.

1.4.5 Example

 $Q_d(p) = 200 - 40p, Q_s(p) = 10p$

a) What is the equilibrium price and quantity?

200 - 40p = 10p

200 = 50p

$$p^* = 4$$

$$Q_d(4) = 200 - 40(4) = 40, Q_s(p) = 10p = 10 * 4 = 40$$

$$Q^* = 40$$

b) What is the inverse demand and supply.

$$Q_d(p) = 200 - 40p, Q_s(p) = 10p$$
$$Q = 200 - 40p$$
$$40p = 200 - Q$$
$$p = 5 - \frac{1}{40}Q$$
$$Q = 10p$$
$$p = \frac{1}{10}Q$$

c) Plot the equilibrium, mark the equilibrium price and quantity.

d) What are the consumer and producer surplus?

$$CS = \frac{1}{2} * 1 * 40 = 20$$
$$PS = \frac{1}{2} * 4 * 40 = 80$$

$$TS=100$$

e) What is the price elasticity of demand at the equilibrium price?

$$Q_d\left(p\right) = 200 - 40p$$

$$\epsilon = \frac{\partial \left(200 - 40p\right)}{\partial p} \frac{p}{200 - 40p}$$

$$=-40\frac{p}{200-40p}$$

 $p^{*} = 4$

$$= -40\frac{4}{200 - 40 * 4} = -40\frac{4}{40} = -4$$

When price goes up by 1% demand goes down by 4% this is **elastic demand**.