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Part I

Framework

In this part, we will look at some of the framework we will use throughout the rest of the course.

1 Binary Relations and Preferences

1.1 Definition

In mathematics, a binary relation is a concept that describes a relationship between things. They
allow us to express various kinds of relationships.

Definition 1.1: Relation. Formally, a binary relation R on A is a subset of the
Cartesian product A×A. That is, R ⊆ A×A. If (a, b) ∈ R, then we say that a is related
to b by R, often denoted as aRb.a

aTechnically, a relation can be between two different sets A and B, but in this course we are usually
representing relationships among elements of a single set.

This is a somewhat intense definition, but relations are very familiar. Here are some examples
of mathematical binary relations.

Example 1.1: Siblings. Let R be a relation on the set of all people. If Laura l and
Mike m are siblings, then (l,m) ∈ R. We can also write lRm. Similarly (m, l) ∈ R and
we can write mRl.

Example 1.2: Friends. Friend of: Let R be a relation on the set of people where aRb
means ”person a is a friend of person b”. If Michael m and Sarah s are friends, then mRs.
Similarly sRm.

Example 1.3: Height. Human height: Let R be the ”at least as tall as relation on the
set of people” where aRb means ”person a is at least as tall as person b”. For example, if
John j is taller than Alice a, then jRa. Notice that unlike the previous two examples, we
would not say aRj since Alice is not at last as tall as John.

As we can see, binary relations can capture a wide range of relationships.

1.2 Properties of Relations

Notice how in the examples Example 1.1 (friends) and Example 1.2 (siblings) there is a symmetry
to the relation. If person a is a sibling of person b then person b is also a sibling of a. The same
is the case with friends (I think). In either case, if aRb, then bRa. We say that such a relation
is symmetric. Can you think of some other relations on the set of humans that are symmetric?
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There are many properties such as symmetry that we should know about. Here is a list of some
properties a relation can have.

Definition 1.2: Reflexive. A relation R on a set A is reflexive if every element is
related to itself, i.e., Formally: ∀a ∈ A, (a, a) ∈ R.

Definition 1.3: Complete. A relation R on a set A is total if every pair of elements
is related in at least one direction.
Formally: ∀a, b ∈ A, aRb or bRa or both.

Definition 1.4: Transitive. A relation R on a set A is transitive if a is related to b
and b is related to c, then a is related to c.
Formally: ∀a, b, c ∈ A, aRb&bRc ⇒ aRc.

Definition 1.5: Symmetric. A relation R on a set A is symmetric if any time a is
related to b, then b is also related to a.
Formally: ∀a, b ∈ A, aRb ⇒ bRa.

Definition 1.6: Asymmetric. A relation R on a set A is asymmetric if any time a is
related to b, then b is not related to a
Formally: ∀a, b ∈ A, aRb ⇒ b�Ra.

1.3 Preference Relation

A preference relation is a set of statements about outcomes, objects, or pairs of bundles. The
statement x is at least as good as y is shortened to x ≿ y.

Definition 1.7: Rational Preference Relation. A rational preference relation is a
complete and transitive preference relation ≿ where we interpret the statement a ≿ b as
“a is at least as good as b.

Info 1.1: What it means to be rational.. There is a lot of misunderstanding about
the formal meaning of the word rational in economics, even among economists’ textbook
writers. Rationality has little to do with self-interest, being fully informed, or happiness.
Though rationality certainly does not preclude these things.
Rational consumers have preferences. Preferences allow the consumer to rank alternatives
(ties are allowed). They can have any ranking they want. Rational consumers choose the
highest ranked alternative among the set of alternatives they can afford.
Economists represent these rankings with a utility function that gives higher ranked alter-
natives a higher score. Representing preferences with a utility function allows economists
to use the tools of mathematics to study choices.
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1.4 Indifference and Strict Preference

Let (x1, x2) represent bowls of ice cream x1 scoops of vanilla and x2 scoops of chocolate.

Suppose that someone likes a scoop of vanilla more than a scoop of chocolate. Then the following
would be true for them: (1, 0) ≿ (0, 1). They might also like any the number of scoops of vanilla
more than the same number of chocolate. Then the following would also be true for their
preferences: (2, 0) ≿ (0, 2) and (3, 0) ≿ (0, 3) and (100, 0) ≿ (0, 100).

The following is true for a consumer who does not care about flavor at all just the total amount
of ice cream: (1, 0) ≿ (0, 1) , (0, 1) ≿ (1, 0). Notice that we have both (1, 0) ≿ (0, 1) and
(0, 1) ≿ (1, 0). That is, a scoop of vanilla is just as good as a scoop of chocolate and a scoop of
chocolate is just as good as a scoop of vanilla. When this is the case, we say that the consumer
is indifferent and write (1, 0) ∼ (0, 1).

Definition 1.8: Indifference Relation. a ∼ b when a ≿ b and b ≿ a. “a is indifferent
to b”.

If a consumer is not indifferent between two things, we say that they have strict preference.

Definition 1.9: Strict Preference Relation. a ≻ b when a ≿ b and b��≿a. “a is
strictly preferred to b”

Note that ≿ is symmetric and ≻ is asymmetric.

1.5 Why Complete and Transitive?

You might wonder why completeness and transitivity are the two key assumptions we make.
Here’s why.

Economics is about choice. We assume people draw on their preferences to make these choices.
Suppose we have the following complete and transitive preference relation on the set {a, b, c}.

a ≿ b, a ≿ c, b ≿ c, a ≿ a, b ≿ b, c ≿ c

. Below, I have created a plot of these preferences where there is an arrow pointing from one
letter to another if the first is preferred to the second. For instance, there is an arrow pointing
from a to b since a ≿ b. I have left off the arrows from each letter to themselves since they do
not add much to this figure. Just know that technically they should also be there.
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Figure 1.1: A Complete and Transitive Relation on {a, b, c}

a

b

c

Look how such a complete and transitive relation creates a natural ordering of the objects.
Things higher up, like a, are better than everything lower. Even when we get more objects and
some indifferences, the same kind of shape appears again. Let’s plot the following complete and
transitive relation (it is much easier to visualize with the graph).

a ≿ b, b ≿ a, a ≿ c, a ≿ d, b ≿ c, b ≿ d, c ≿ d, d ≿ c, a ≿ e,

b ≿ e, c ≿ e, d ≿ e, a ≿ a, b ≿ b, c ≿ c, d ≿ d, e ≿ e

Figure 1.2: A Complete and Transitive Relation on {a, b, c, d, e}

a b

c d

e

One nice property of such a shape is that, whatever set of objects a consumer might have to
choose from, there is some object in that subset that is at least as good as everything else in that
set. In the above example, for instance, a and b are at least as good as everything in {a, b, c, d, e}.
b is at least as good as everything in {b, d, e}. Whatever set we pick, there is at least one object
like that. For whatever set the consumer might be asked to choose from, there is at least one
best object– something they would be happy to choose.

Definition 1.10: Best. x is best from some set B (that includes x) if x ≿ y for every
y in B.

We sometimes denote the set of best outcomes/options from a set as C(B). This is called the
choice function. It is the set of best things from a set. Or rather, the things the consumer would
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be willing to choose. As an example, for the preferences graphed above, C(a, b, c, d, e) = {a, b}
and C(b, c, e) = {b}.

What if we make the relation incomplete by removing a ≿ c, what is best from the set of {a, c}?
There is nothing as good as everything else, because the consumer has no idea how to compare a
and c. That is C({a, c}) = ∅. So, somewhat trivially, when a relation is not complete, there are
menus of objects that the consumer cannot choose form. In a less trivial way, this also happens
when we make the relation intransitive.

Suppose we have the following complete but intransitive preference relation on the set {a, b, c}.

a ≿ b, b ≿ c, c ≿ a, a ≿ a, b ≿ b, c ≿ c

.

Figure 1.3: A Complete and Intransitive Relation on {a, b, c}

a

b c

What is best from {a, b, c}? That is, what is C({a, b, c, }). There is nothing at least as good
as everything else. a is not at least as good as c, b is not at least as good as a, c is not at
least as good as b. What would the consumer choose?!? We have C({a, b, c}) = ∅. Intransitive
preferences create these kinds of cycles (look at the figure again), and when there are cycles,
there are sets that the consumer cannot choose from.

1.6 Indifference Curves and Other Sets

For every object, we can use the preference relation to define a few sets. ≿ (x) is the set of
objects that is at least as good as x. ≻ (x) is the set of objects that is strictly better than x.
∼ (x) is the set of objects indifferent to x.

Definition 1.11: Weakly Preferred Set. The set of points weakly preferred to x is:
≿ (x) = {y|y ∈ X, y ≿ x}

Definition 1.12: Strictly Preferred Set. The set of points strictly preferred to x is:
≻ (x) = {y|y ∈ X, y ≻ x}

Definition 1.13: Indifference Set. The set of points indifferent to x is: ∼ (x) =
{y|y ∈ X, y ∼ x}

Sets of indifferent bundles are very important in studying preferences. We call such a set of
bundles an “indifference curve”. We use indifference curves to visualize preferences. Note:
There are many indifference curves. We only sketch a few to get an idea of the “shape” of the
preferences.

10



1.7 Exercises

For the relations R below, when a pair is not listed, assume that the relation is not true of that
pair.

Exercise 1.1: Is the relation “is a sibling of” on the set of all people complete? Is it transitive?
Is it symmetric?

Exercise 1.2: Is the relation “is at least as tall as” on the set of all people complete? Is it
transitive? Is it symmetric?

Exercise 1.3: Is the relation “has same birthday as” on the set of all people complete? Is it
transitive? Is it symmetric?

Exercise 1.4: Explain why a relation that is complete and symmetric is trivial in the sense
that it relates all pairs to each other.

Exercise 1.5: For the set X = {x, y, z}, identify if the following relations are transitive:

1. R : xRy, yRz, xRz

2. R : xRx, yRy, zRz

3. R : xRy, yRz, zRx

Exercise 1.6: For the set X = {p, q, r}, identify if the following relations are complete and
transitive. When a relation is not both of these, say which assumption fails and why.

1. R : pRp, qRq, rRr, pRq, qRr

2. R : pRp, qRq, rRr, pRq, qRr, pRr

3. R : pRp, qRq, rRr, pRq, qRp, qRr, rRq, pRr, rRp

4. R : pRp, qRq, rRr, pRq, qRp, pRr

Exercise 1.7: Consider the preference relation that describes someone’s preferences over left l
and right r shoes, where they only care about the number of usable pairs of shoes they consume.
Sketch the indifference curves ∼ (1, 1) and ∼ (2, 2) on graph that has l on the x-axis and r on
the y-axis. Label the set ≻ (2, 2).

Exercise 1.8: Consider the preference relation that describes someone’s preferences for red
apples r and green apples g, where they only care about the total number of apples they have
but not the color. Sketch the indifference curves ∼ (1, 1) and ∼ (2, 2) on graph that has r on the
x-axis and g on the y-axis. Label the set ≻ (2, 2).

Exercise 1.9: Plot the following rational preference relation using a graph similar to those
used in this chapter.

a ≿ b, a ≿ c, a ≿ d, b ≿ c, b ≿ d, c ≿ b, c ≿ d, a ≿ a, b ≿ b, c ≿ c, d ≿ d

11



Exercise 1.10: Write the strict preference relation ≻ induced by each of the following weak
preference relations:

1. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ r, p ≿ r

2. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ p, q ≿ r, r ≿ q, p ≿ r, r ≿ p

Exercise 1.11: Write the indifference relation ∼ induced by each of the following weak pref-
erence relations:

1. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ r, p ≿ r

2. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ p, q ≿ r, r ≿ q, p ≿ r, r ≿ p

1.8 Key Topics

• Know what a Relation is and how it is used to represent relationships in economics and
mathematics.

• Know what it means for a relation to beReflexive, Complete, Transitive, Symmetric,
and Asymmetric.

× (Not On Midterm.) Know what it means for a relation to be Symmetric, and Asym-
metric.

• Be able to determine whether a relation from everyday life is Reflexive, Complete, Transi-
tive, Symmetric, and Asymmetric as in Exercises 1.1-1.3.

• Be able to determine whether a formally described relation is Reflexive, Complete, Transi-
tive, Symmetric, and Asymmetric as in Exercises 1.5-1.6.

• Be able to graph a relation as in Exercise 1.9.

• Understand the definition and use of indifference sets, strictly preferred sets, and weakly
preferred sets.

× (Not On Midterm.) Draw indifference sets, strictly preferred sets, and weakly preferred
sets for some described preferences as in Exercises 1.7-1.8.

• Understand how a preference relation is used and defined and how the weak preference
relation ≿ can also describe strict preference ≻ and indifference ∼.

• Given a weak preference relation, write the strict preference relation as in Exercise 1.10.

• Given a weak preference relation, write the indifference relation as in Exercise 1.11.

• Understand what properties are needed for a preference relation to be called rational and
why those properties are important.
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2 Utility

A utility function is a way to assign “scores” to bundles, so that better bundles according to
≿ get a higher score. Utility functions allow us to use familiar tools of mathematics to study
preferences.

Let’s return to our plot of a complete and transitive preference relation from the last chapter.
Recall that here, things higher up are better than anything lower down. It is possible to graph
preferences this way as long as preferences are complete and transitive. This time, let’s add some
numbers to each level of the graph where things higher up get higher numbers.

Figure 2.1: A Complete and Transitive Relation on {a, b, c, d, e} with Utility

3

2

1

a b

c d

e

Notice that the number represents ”how good” an object is here. a and c get a number 3. They
are both indifferent to each other, but strictly better than everything else. c and d get the
number 2. They are indifferent to each other but strictly better than e which gets the number
1. We can think of these numbers as “scores” that represent the preferences. In fact, this is
precisely what we call a utility function.

2.1 Definition

Definition 2.1: Utility Function. A utility function U (x) represents preferences ≿
when, for every pair of bundles x and y, U (x) ≥ U (y) if and only if x ≿ y.

Example 2.1: Utility Function Example. Suppose we have the preference relation
plotted above.

a ≿ b, b ≿ a, a ≿ c, a ≿ d, b ≿ c, b ≿ d, c ≿ d, d ≿ c, a ≿ e,

b ≿ e, c ≿ e, d ≿ e, a ≿ a, b ≿ b, c ≿ c, d ≿ d, e ≿ e

Written more succintly, a ∼ b ≻ c ∼ d ≻ e.
Some utility functions that represent these preferences are U (a) = 10, U (b) = 10, U (c) =
5, U (d) = 5, U (e) = 0 and also U (a) = 12, U (b) = 12, U (c) = 10, U (d) = 10, U (e) =
−100.

Note that utility functions simply represent the underlying preference relation ≿ of a consumer.
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When there is a large number of alternatives, the preference relation itself can be cumbersome
to work with. However, a utility function can effectively characterize a preference relation in a
succinct way.

Example 2.2: Perfect Substitutes Preferences. Suppose a consumes red apples r
and green apples g. They like green apples twice as much as red apples, so they would
always give up two red apples in exchange for one green apple.
For combinations of red apples and green apples (r, g) this consumer has preference
where, for example:

(2, 0) ∼ (0, 1)
(2, 1) ≻ (0, 1)
(0, 1) ≻ (1, 0)

We can summarize these preferences with the utility function u(r, g) = r + 2g.

Example 2.3: Perfect Complements Preferences. Suppose a consumes only apple
pies. An apple pie is made from apples a and crusts c. It takes exactly 2 apples and 1
crust to make a pie.

For combinations of apples and crusts (a, c) this consumer has preference where, for
example:

(2, 0) ∼ (0, 1) (Since both make zero pies.)
(2, 1) ∼ (2, 2) (Since both make one pie.)
(4, 2) ≻ (2, 1) (Since the first makes two and the second makes one pie.)

We can summarize these preferences with the utility function u(r, g) = min
{

1
2a, c

}
.

2.2 Ordinal Utility / Cardinal Utility

Often, the magnitude of utility is meaningless and only the relationships between scores matter.
In this case, we say that the utility is ordinal. In Example 2.1, the fact that U(a) = 10 and
U(c) = 5 do not imply that a is twice as good as c. In fact, in the second set of utilities, a gets
a utility that is only 1.2 times greater than c.

Sometimes, however, there is meaningful information encoded in a particular representation.
Suppose that we have a consumer who consumes two things. t tacos and m money, and their
preferences can be represented by u(t,m) =

√
t+m. The utility of the combination u(4, 10) = 12

is the same as the utility of u(0, 12) = 12. In terms of preferences (4, 10) ∼ (0, 12). The utility
function directly encodes the amount of money (and no tacos) that some combination is worth
to the consumer. Utility is measured in terms of dollars. In this sense, the bundle (36, 18)
which has utility u(36, 18) = 24 is worth ”twice” as much as the bundle u(4, 10) = 12. The
utility is measured in terms of some tangible thing, in this case money. When this is the case,
we say that the utility function is cardinal.
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Definition 2.2: Ordinal Utility. Utility function in which utility numbers have no
meaning beyond relative comparisons.

Definition 2.3: Cardinal Utility. Utility function in which utility numbers are mea-
sured in terms of something with meaningful magnitude (like money).

One common utility function that we will use in this course is the quasi-linear utility function
that measures everything in terms of money.

Definition 2.4: Dollar-Denominated Quasi-Liner Utility. A utility function of the
form u(x,m) = f(x) +m where m is money.

With this utility function, the utility number u = u(x,m) says ”the combination (x,m) worth
the equivalence of $u to the decision maker.

2.3 Exercises

Exercise 2.1: Consider bundles a, b, and c with the given utilities U(a) = 8, U(b) = 15, and
U(c) = 10. What complete and transitive relation ≿ does this represent?

Exercise 2.2: Provide an alternative utility function that represents the same preferences as
those in the previous exercise.

Exercise 2.3: Suppose that a consumer’s preferences can be represented by the utility function
u(t,m) =

√
t+m. Which is true of this consumer’s preferences? (16, 3) ≻ (4, 5), (4, 5) ≻ (16, 3),

or (4, 5) ∼ (16, 3)

Exercise 2.4: Suppose that a consumer’s preferences can be represented by the utility function
u(t,m) =

√
t +m. What is the utility of (9, 4). What amount of money m solves the following

(9, 4) ∼ (0,m)?

Exercise 2.5: Suppose that a consumer’s preferences can be represented by the utility function
u(t,m) =

√
t+m. Sketch the indifference curve ∼ (9, 4) on a graph with t on the x-axis and m

on the y-axis. Feel free to use a computer to help you with this.

Exercise 2.6: Discuss the following statement: Economists do not have to believe that utility
functions exist in the minds of consumers for the concept to be useful.

Exercise 2.7: For the set X = {p, q, r}, write down a utility function that represents each of
these preference relations.

1. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ r, p ≿ r

2. p ≿ p, q ≿ q, r ≿ r, p ≿ q, q ≿ p, q ≿ r, r ≿ q, p ≿ r, r ≿ p
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Exercise 2.8: Suppose that a consumer’s preferences can be represented by the utility function
u(x, y) = x+ y. Sketch the indifference curve ∼ (4, 4) on a graph with x on the x-axis and y on
the y-axis.

Exercise 2.9: Suppose that a consumer’s preferences can be represented by the utility function
u(x, y) = 2x + y. Sketch the indifference curve ∼ (4, 4) on a graph with x on the x-axis and y
on the y-axis.

Exercise 2.10: Suppose that a consumer’s preferences can be represented by the utility function
u(x, y) = min{x, y}. Sketch the indifference curve ∼ (4, 4) on a graph with x on the x-axis and
y on the y-axis.

2.4 Key Topics

• Understand how a utility function can be used to represent preferences and be able to
discuss this in everyday language as in Exercise 2.6.

• Given a preference relation, write down a utility function that represents it as in Exercise
2.1.

• Be able to turn a preference relation into a utility function as in Exercise 2.7

× (Not On Midterm.) Given a utility function determine what is true about the underlying
preferences as in Exercises 2.3 and 2.4.

× (Not On Midterm.) Given a simple utility function, sketch indifference curves as in
Exercises 2.7, 2.8 and 2.9. 2.5 is also relevant but harder to sketch.

× (Not On Midterm.) Understand what it means for a utility function to be ordinal vs.
it being cardinal.

3 Public Decision Models

3.1 Public vs Private

We now begin our study of public economics in earnest. The way in which public economics differs
from the type of economics you might have studies in a course like intermediate economics is
that in this course, we focus on situations, outcomes, or choices that affect more than one person.
Here, we will differentiate between private outcomes and public outcomes.

Example 3.1: Private Outcome. Alice is in her studio apartment on Saturday after-
noon. She decides to microwave a leftover fish to enjoy for lunch. Besides us, she is the
only one who will ever know this happened.

When studying private outcomes, we assume that an individual assesses the available options
according to their preferences and chooses their favorite alternative. This is the end of the story
with private choice. Choices are optimal, or they are not.
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This course examines the complexities that arise when outcomes are public in nature. A public
outcome impacts multiple individuals. In contrast to private choice, what is optimal for one
person may be suboptimal for others.

Example 3.2: Public Outcome. Alice is at work on a Monday afternoon. She decides
to microwave a leftover fish to enjoy for lunch. The lingering smell of warm fish reduces
office productivity for three days.

3.2 Ordinal Models

The real world is complex. The value of creating theoretical models is that they simplify scenarios
down to their core elements. For many scenarios we want to study in this course, I think we can
get away with focusing on three elements:

• Who are the people involved?

• What are the potential outcomes?

• What are each person’s preferences over those outcomes?

For ordinal models, we define only ordinal preference relations over the outcomes.

Definition 3.1: Ordinal Model. An ordinal public outcome model is: O: the set of
outcomes. P : the set of decision makers. And for every decision maker i ∈ P : ≿i their
preferences over the set O.

Let’s look at an example. In this scenario, Alice and Bob are co-workers. Alice sometimes
microwaves fish. Bob hates the smell of microwaved fish. Here we have people Alice a and Bob
b and there are two outcomes “Alice microwaves fish” (y) and “Alice does not microwave fish”
(n).

Example 3.3: Microwaving Fish.

P = {a,b}
O = {yes,no}

yes ≻a no

no ≻b yes

Let’s look at a slightly more complex example. Alice and Bob share the office kitchen. Sometimes,
it needs to be cleaned. It can be cleaned by only one person, or the work can be shared. However,
both prefer that the kitchen be clean, even if that means doing the work alone. Let’s formalize
this model.
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Example 3.4: Cleaning the Kitchen.

P = {a,b}
O = {both,Alice,Bob,neither}

Bob ≻a both ≻a Alice ≻a neither

Alice ≻b both ≻b Bob ≻b neither

3.3 Cardinal Models

In some situations, we need or have a little bit more information– not only relative preferences
over outcomes, but also the strength of those preferences measured through some common cardi-
nal utility measure, like there value of each outcome in terms of dollars. To model these scenarios,
we use a cardinal model. Instead of defining the preference reltion ≿i for each person, we define
their utility function ui over the outcomes.

Definition 3.2: Cardinal Model. A cardinal public outcome model is: O: the set of
outcomes. P : the set of decision makers. And for every decision maker i ∈ P : ui() their
cardinal utility function over the set O.

Let’s update Example 3.3 and Example 3.4 to cardinal models. For both, let ua be the utility
of Alice and ub be the utility of Bob. Let’s assume that these utilities are measured in terms of
dollars so that we have a valid means for assessing the magnitudes of utility. That is, these are
cardinal utilities.

Example 3.5: Microwaving Fish: Utility Version.

P ={a,b}
O ={yes,no}

ua(o) =

{
10 o = yes

9 o = no

ub(o) =

{
1 o = yes

10 o = no

One way for us to interpret these utilities is that while Alice would pay up to $1 to be able to
microwave fish, Bob would pay up to $9 to prevent it.

18



Example 3.6: Cleaning the Kitchen: Utility Version.

P ={a, b}
O ={both, Alice, Bob, Neither}

ua(o) =


12 if o = both

10 if o = Alice

25 if o = Bob

5 if o = neither

ub(o) =


12 if o = both

25 if o = Alice

10 if o = Bob

5 if o = neither

3.4 Exercises

Exercise 3.1: Add a third person (Camden) to Example 3.3 who likes the smell of warm fish.

Exercise 3.2: Add a third person (Camden) to Example 3.4 who is so inept that if he attempts
to clean, even with the help of others, he makes the kitchen worse than if no one had tried to clean
at all. For preferences, there are many right answers, justify your answers with an explanation
of why Alice, Bob, and Camden might have those particular preferences in the context of this
“story”.

Exercise 3.3: Add a third person (Camden) to Example 3.5 who likes the smell of warm fish.
Ensure that the utilities you choose are consistent with your solution to Exercise 3.1.

Exercise 3.4: Add a third person (Camden) to Example 3.6 who is so inept that if he attempts
to clean, even with the help of others, he makes the kitchen worse than if no one had tried to
clean at all. Ensure that the utilities you choose are consistent with your solution to Exercise
3.2.

3.5 Key Topics

× (Not On Midterm.) Understand the elements of an Ordinal Model.

× (Not On Midterm.) Understand the elements of a Cardinal Model.

× (Not On Midterm.) Be able to modify a ordinal model to change the preferences, add
people, or change the outcomes as in Exercises 3.1 and 3.2.

× (Not On Midterm.) Be able to modify a cardinal model to change the preferences, add
people, or change the outcomes as in Exercises 3.3 and 3.4.
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4 Pareto

4.1 Pareto Dominance

Imagine yourself as a benevolent ruler, making decisions for society. How would you choose
outcomes? One thing that I think should be true of every benevolent ruler’s preferences is that
if there were two outcomes and one was at least as good for everyone as the other, the ruler
should prefer that better outcome.

Think about the cleaning example in Example 3.4. How would you choose what to implement?
Having both clean seems fair, but maybe only having one clean is more efficient? I don’t think
there is a clear best outcome, but I think essentially everyone would agree that having no one
clean is not a desirable outcome. Any of the other outcomes are better for both Alice and Bob.

This notion of being at least as good for everyone is what we call “Pareto domination” . An
outcome o′ Pareto dominates o if o′ is at least as good for everyone. Formally:

Definition 4.1: Pareto Dominates. An outcome o′ Pareto dominates o if o′ ≿i o for
all i ∈ P .

4.2 Pareto as a Relation

Let’s define Pareto dominance as a relation. We will say aPb if outcome a Pareto dominates b
according to the definition above.

Example 4.1: Pareto Dominance in Cleaning the Kitchen. In Example 3.4. For
convenience, let’s simplify the outcome names from O = {both,Alice,Bob, neither} to
O = {ab, a, b, n}. We can now define the Pareto relation P on this set: abPn, aPn, bPn,
abPab, aPa, bPb, nPn.

Is P a complete and transitive relation? It is always transitive as long as all of the individuals
in the model have transitive preferences. This is because, for example, if everyone likes a over
b and everyone likes b over c then since everyone has transitive preferences, everyone will like a
over c and hence a will Pareto dominate c.

However, Pareto dominance is not always complete. In fact, in the example above it is not
complete. There is no relationship between ab and a or between ab and b or between a and b.
Pareto dominance cannot compare these outcomes.

Info 4.1: Pareto Dominance is Incomplete. The Pareto dominates relation is
always transitive but not always complete.

Since Pareto dominance is incomplete, for any given set of options, there may not be an outcome
that Pareto dominates all the others. If there were, it would be pretty clearly the best outcome.

Let’s look at an example of Pareto dominance.
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Example 4.2: Example of Pareto Dominance for Two People.

a ≻1 c ≻1 b ≻1 d ≻1 e

b ≻2 d ≻2 a ≻2 c ≻2 e

Everything Pareto dominates e. b Pareto dominates d. a Pareto dominates c. But
otherwise, the outcomes are not comparable in Pareto terms. The Pareto dominance
relation P is:

aPc, aPe, bPd, bPe, cPe, dPe,

aPa, bPb, cPc, dPd, ePe

Let’s plot this relation using the same type of graph from the chapter on preferences.

Figure 4.1: A graph Pareto dominance relation from Example 4.2

a b

c d

e

4.3 Strict Pareto Dominance

Just like with preferences, where we defined the strict preference relation such that a ≻ b any
time a ≿ b but b��≿a, we can do the same with Pareto dominance.

Definition 4.2: Strictly Pareto Dominates. An outcome o′ Strictly Pareto domi-
nates o if o′Po but o�P o′ .

What will this mean in terms of preferences of the individuals? Well, first, o′Po says everyone
should like o′ at least as well as o. But at the same time, o�P o′ says that it is not the case that
everyone likes o at least as well as o′. This means at least one person must like o′ strictly better
than o. (Take a moment to convince yourself of this.) Combining these, o′ will strictly Pareto
dominate o if everyone likes o′ at least as well and at least one person likes it strictly more.

Definition 4.3: Strictly Pareto Dominates. An outcome o′ Strictly Pareto domi-
nates o if o′ ≿i o for all i ∈ P and there is some i ∈ P such that o′ ≻i o.

In the example above, everything strictly dominates e. a strictly dominates c and b strictly
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dominates d. Notice that in each case, on the graph, an outcome that is strictly dominates by
some other outcome has at least one one-way arrow leading into it.

4.4 Pareto Efficiency

As we have seen, Pareto dominance is not complete. In that sense, for any given set of options,
there may not be an outcome that Pareto dominates all the others. If there were, it would be
pretty clearly the best outcome. However, just like in our case of the cleaning example, we can at
least use Pareto dominance to eliminate the clearly undesirable options. What are those clearly
undesirable options? The ones that are strictly Pareto dominated. This is because for
any outcome that is strictly Pareto dominated there must be a way to make everyone at least as
well off and at least one person strictly better off. That’s a win/win.

One great thing about Pareto efficiency is that, even though there will not always be some
outcome that Pareto dominates all others, there will always be at at least one Pareto
efficient outcome.

Definition 4.4: Pareto Efficiency. A outcome o is Pareto efficient if there is no other
outcome o′ that strictly Pareto dominates o.

If we graph preferences, such as in Figure 4.1, a Pareto efficient outcome has no one-way arrow
leading into it. We can also define Pareto efficiency in terms of the preferences of individuals
since we have defined strict Pareto dominance in terms of individual preference above.

Definition 4.5: Pareto Efficiency in Terms of Individual Preferences. A out-
come o is Pareto efficient if there is no other outcome o′ such that for all people o′ ≿i o
and for at least one person o′ ≻i o.

In Example 4.2, the Pareto efficient outcomes are a and b. From a there is no way to make
someone better off without making someone strictly worse off. The same goes for b. Looking at
the graph, they are also the only outcomes that have no one-way arrow that points to them.

In our cleaning example, a, b and ab are all Pareto efficient since, starting from any of these,
there is no way to make someone strictly better off without also making someone strictly worse
off.

4.5 Pareto Efficiency Under Cardinal Preferences

When preferences are Cardinal, that is, the preferences are given a magnitude through the utility
function that is measured in terms of some natural “measuring stick” like money, we can still
use Pareto efficiency. We just need to rewrite the definition in terms of utilities rather than the
preference relation.

Definition 4.6: Pareto Efficiency. A outcome o is Pareto efficient if there is no
other outcome o′ such that strictly Pareto dominates o. That is, there is no o′ such tht
Ui(o

′) ≥ Ui(o) for all i ∈ P and Uj(o
′) > Ui(o) for at least one j ∈ P .
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It is important to note that Pareto efficiency does not imply fairness or equity. An allocation can
be Pareto efficient even if it is highly unequal. For example, look at the cardinal version of the
“Microwaving Fish” model in 3.5. Alice likes to microwave fish, but Bob really hates the smell
of warm fish. Like, he throws up. Both outcomes are Pareto efficient, but letting Alice cook the
fish seems a little unfair.

Thus, while achieving Pareto efficiency is often a goal of policy interventions. Policymakers will
often need consider other criteria, such as equity and fairness, when designing policies to social
outcomes. We will return to this later. For now, let’s look at a slightly more complex model to
solidify understanding about Pareto efficiency.

4.6 Geometry of Pareto Efficiency

When we are using cardinal utilities, we can visualize Pareto dominance and Pareto efficiency. We
begin with a plot of the utility pairs from our running example Example 3.6 shown in Figure 4.2.

Figure 4.2: Cleaning Utility Pairs
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What does it look like when a choice combination is not Pareto efficient? Have a look at Figure 4.3
which shows the possible points that Strictly Pareto dominate (5, 5) from Example 3.6. Notice
that (12, 12, (25, 10) and (10, 25) are all in the blue region. They all strictly Pareto dominate
(5, 5).
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Figure 4.3: Outcomes that Strictly Pareto Dominate (5, 5) from Example 3.6.
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Here, (5, 5) is not Pareto efficient because there are outcomes that strictly Pareto dominate it.

On the other hand, if we repeat this exercise with the point (12, 12), we see there are no outcomes
in the blue region. It is Pareto efficient! This shown in Figure 4.4.

Figure 4.4: Outcomes that Strictly Pareto Dominate (12, 12) from Example 3.6.
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4.7 Exercises

Exercise 4.1: Alice and Bob have the following preferences over outcomes {a, b, c}. Graph the
Pareto dominance relation for this example as demonstrated in this chapter.

• Alice: a ≻ b ≻ c

• Bob: a ∼ b ≻ c
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• Camden: a ∼ b ≻ c

Exercise 4.2: Alice and Bob have the following preferences over outcomes O = {a, b, c}. What
are the Pareto efficient outcomes?

• Alice: a ≻ b ≻ c

• Bob: b ≻ a ≻ c

Exercise 4.3: Alice, Bob, and Camden have the following preferences over outcomes O =
{a, b, c, d}. What are the Pareto efficient outcomes?

• Alice: b ≻ d ≻ c ≻ a

• Bob: d ≻ c ≻ a ≻ b

• Camden: a ≻ c ≻ d ≻ b

Exercise 4.4: Alice, Bob, Camden, and Dave have the following preferences over outcomes
O = {a, b, c, d, e, f}. What are the Pareto efficient outcomes?

• Alice: a ≻ b ≻ c ≻ d ≻ e ≻ f

• Bob: a ≻ d ≻ c ≻ b ≻ e ≻ f

• Camden: a ≻ c ≻ b ≻ e ≻ f ≻ d

• Dave: b ≻ c ≻ a ≻ f ≻ d ≻ e

Exercise 4.5: Alice and Bob have the following preferences over outcomes {a, b, c, d}. Graph
the Pareto dominance relation for this example as demonstrated in this chapter.

• Alice: a ∼ b ∼ c ≻ d

• Bob: a ≻ b ∼ c ≻ d

Exercise 4.6: For the example above, which outcomes Pareto dominante others? Which
outcomes strictly Pareto dominate others?

Exercise 4.7: For the example above, what are the Pareto efficient outcomes.

Exercise 4.8: Consider the following model based on Example 3.5, but where Bob can choose
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to leave. Plot the possibly utility combinations and mark the Pareto efficient outcomes.

P ={Alice,Bob}
O ={yes/stays,yes/leaves,no/stays,no/leaves}

Ua(o) =


10 o = yes/stays

10 o = yes/leaves

5 o = no/stays

5 o = no/leaves

Ub(o) =


1 o = yes/stays

5 o = yes/leaves

10 o = no/stays

5 o = no/leaves

Exercise 4.9: Alice and Bob have the following preferences over outcomes {a, b, c, d}. Which
outcomes Pareto dominate others? Which outcomes strictly Pareto dominate others?

• Alice: a ∼ b ∼ c ≻ d

• Bob: a ≻ b ∼ c ≻ d

Exercise 4.10: Alice and Bob have the following preferences over outcomes {b, c, d}. Which
outcomes Pareto dominate others? Which outcomes strictly Pareto dominate others?

• Alice: b ∼ c ≻ d

• Bob: b ∼ c ≻ d

Exercise 4.11: Alice and Bob have the following preferences over outcomes {b, c, d}. Which
outcomes are Pareto Efficient?

• Alice: b ∼ c ≻ d

• Bob: b ∼ c ≻ d

4.8 Key Topics

• Understand what it means for an outcome to Pareto dominate another in terms of
individual preferences and be able to determine, given preferences, when one outcome
Pareto dominates another.

× (Not On Midterm.) Be able to graph the Pareto dominance relation as in exercise
4.1.
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• Know what it means for an outcome to strictly Pareto dominate another.

• Be able to determine which outcomes Pareto dominate and strictly Pareto dominate others
as in exercises 4.9 and 4.10.

• Know what it means for an outcome to be Pareto efficient.

• Determine which outcomes are Pareto efficient as in exercises 4.2, 4.3, 4.4, 4.7, 4.11.

× (Not On Midterm.) Know how to determine when outcomes are Pareto efficient in a
cardinal model and plot the outcomes as in exercise 4.8.

27



Part II

Ordinal Public Choice

In this part, we will look at how societies can aggregate their preferences to make decisions.

For convenience and throughout this Part, we will assume all individuals in the models have
strict preferences over all distinct outcomes. This simplifies some of the work in these sections.
However, nothing about what we will study here requires to make this assumption. Essentially
everything could be extended to include the possibility of indifference in individual preferences.

To be a bit more formal about this. For the rest of this Part in every model we will assume that
for each individual i ∈ P , there are no two distinct outcomes x ̸= y such that x ∼i y. This means
that everyone’s preferences will look like this: x ≻i y ≻i z... with no indifferences. This will
make things a little easier, but know that much of what we will discuss will apply to situations
where indifferences are allowed.

When there are no indifferences, then our definition of Pareto efficiency and Pareto dominance
can be updated. Recall that x Pareto dominates y if everyone likes it at least as well. But if x
and y are distinct and everyone has strict preferences, then the only way this can happen is if
everyone likes x strictly more than y.

Definition 4.7: Pareto Dominance Under Strict Preferences. If everyone’s pref-
erences are strict, then x Pareto dominates y if x ≻i y for all i ∈ P .

We can update Pareto efficiency accordingly as well.

Definition 4.8: Pareto Efficiency Under Strict Preferences. If everyone’s prefer-
ences are strict, then x is Pareto efficient if there is no y that everyone likes strictly better.
That is, not y such that y ≻i y for all i ∈ P .

5 Social Preferences and Preference Aggregation

Pareto efficiency is a lovely property. I think it is somewhat indisputably desirable as a property
to strive for. Unfortunately, as we have seen, Pareto efficiency is not always enough to make a
choice among outcomes. It is a property that is transitive but not complete. It helps us choose
outcomes, but it often fails to provide complete guidance on what to choose. In a sense, it is not
enough to help us construct a preference relation on how we might asses the outcomes.

We might want to try to extend Pareto efficiency in a way that offers a complete preference
relation over outcomes that we can use to assess options on behalf of society. We call such
preferences Social Preferences since they are preferences about the outcomes that affect society.
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5.1 Definition

Definition 5.1: Social Preference Relation. A social preference relation ≿∗ is a
complete and transitive relation on the set of outcomes O. It is used to evaluate outcomes
by an administrator to evaluate outcomes on behalf of society.

Think about your preferences about the outcomes in Example 3.3 and Example 3.4. What social
preferences do you have over these outcomes?

Example 5.1: Social Preferences for Example 3.4. In Example 3.4 “Cleaning the
Kitchen“ a social preference relation might be the following:

both ≻∗ Alice ∼∗ Bob ≻∗ neither

Notice that this is a preference relation that does not match the preferences of any of the
individuals in the model.

5.2 Preference Aggregation Rule

Technically, a social preference relation can be any complete and transitive relation on the
outcomes. But really, an administrator should consider how their constituents care about the
outcomes, that is, the social preference relation should somehow be constructed by referencing
the individual preferences.

Definition 5.2: Preference Aggregation Rule. A preference aggregation rule
(also known as a social welfare function) is a way to turn individual preferences into the
social preference relation. Formally, it is a mapping from the set of possible individual
preferences over the outcomes into a social preference relation over the outcomes.

These can be somewhat hard to define using formal notation, so I will use intuitive descriptions
of various rules when necessary. Let’s look at a few preference aggregation rules in the context
of the following two models:

In this section, I present many preference aggregation rules. These are meant to show you some
of the possibilities and demonstrate how different rules can prioritize different kinds of goals.
These should get your mind working on different ways to construct interesting rules. By the end
of the section, I hope you will be able to come up with your own rules and think about how they
might work in practice.

I will use the following two running examples throughout this section. Before you begin reading
through each rule, think about what you would choose as the social preferences for each example.

Example 5.2: Example 1.
There are three people. They have these preferences:
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b
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Example 5.3: Example 2.
There are five people. They have these preferences:
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

5.2.1 Dictatorship

A dictatorship where there is one person whose preferences completely determine the social
preferences. The preferences of everyone else are ignored.

This may seem like a strange rule, but I think it is surprisingly common. For example, the faculty
of the LMU Economics department occasionally meets for lunch. The faculty rotates, being the
one who gets to choose the restaurant. We could vote every time, or submit our rankings, or do
something else. But instead, we rotate being the ”dictator”. It is simple and decisive, and for
scenarios like this that happen over and over, rotating through “dictators” makes what would
usually be a very unfair rule fair in the long-run.

Definition 5.3: Dictatorship. Pick a person i ∈ P . The social preferences are that
person’s preferences. ≿∗=≿i.

Example 5.4: Example 1.
Let’s assume person 1 is the dictator.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

a ≻∗ b ≻∗ c

Example 5.5: Example 2.
For the examples, let’s assume person 1 is the dictator.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

a ≻∗ c ≻∗ b

Another nice thing we can say about dictatorships is that at least they always give us a complete
and transitive social preference ordering. Let’s not undervalue that. There are reasonable rules
that do not return a complete and transitive ordering.
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5.2.2 Unanimity Rule

The unanimity rule is the rule that results from using Pareto dominance to create social
preferences. Here, we rank one option over another if it Pareto dominates: everyone agrees it is
better. Since preferences are strict here, that means everyone likes it strictly more.

Definition 5.4: Unanimity Rule. x ≻∗ y if x ≻i y for everyone. That is, one outcome
is ordered above another if everyone thinks it is better.

Example 5.6: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

a ≻∗ b

This is an incomplete social preference. It says nothing about the preferences between a, c
and b, c.

Example 5.7: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b
Unanimity gives us nothing here!

As we can see, and probably as you expected, the unanimity rule is almost never complete!
However, it is transitive. If everyone likes x over y and everyone likes y over z they will certainly
like x over z (assuming they all have transitive preferences). Now let’s look at a rule that is
complete, but (perhaps surprisingly) may be intransitive.

5.2.3 Majority Rule

Aka.Pairwise Voting.

The pairwise majority social welfare function is a rule where the preference of each pair of
alternatives is determined by the majority of voters. In the late 18th century, this was considered
the sort of definition of social preferences. If most of society likes x over y then we can say that
x ≿∗ y truly represents “society’s” preferences between x and y. There’s a problem though...

Definition 5.5: Majority Rule. x ≻∗ y if more than half of the people prefer x to
y. In other words, x is better than y in the social preferences if it wins a pairwise vote
between those outcomes.
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Example 5.8: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

a ≻∗ c ≻∗ b

Example 5.9: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

a ≻∗ c ≻∗ b

In these two cases, we get a complete and transitive social preference. Since some outcome will
always win each pairwise vote, the rule will always produce a complete social preference relation,
but now we will see that it will not always be transitive.

5.2.4 Condorcet Paradox

The Condorcet paradox, named after the French mathematician and philosopher Marquis de
Condorcet, who discovered in the late 18th century, that social preferences can be cyclic, even if
the individual preferences are not.

Example 5.10: Condorcet Cycle.
1: a ≻ b ≻ c
2: b≻ c ≻ a
3: c ≻ a ≻ b

a ≻∗ b, b ≻∗ c, c ≻∗ a

Intransitive Social Preference Relation

5.2.5 Copeland’s Method

Copeland’s method, is named after Arthur Copeland who popularized it in the 1950s, though it
appears to date back to work by Ramon Llull in the early 1300s! It handles Condorcet’s paradox
by assigning 1 point for each pairwise win and 0.5 points for each pairwise tie (though in all
the examples below there will be an odd number of people and so there will be no ties). The
candidate with the highest total points is the winner.

This is also how many sports tournaments are conducted. In sports we can easily get intransi-
tivity. Team a beats b, b beats c, but c beats a. You might see how that would be a problem
with picking a winner. For instance, a similar method is used to determine which teams advance
from the “group” round to the “knockout” round in the World Cup.
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Definition 5.6: Copeland’s Method. Conduct a pairwise vote for every pair. If an
outcome wins a vote, add one to its score. (If there is a tie add 2

2 . The social preferences
are ranked by score. So if x gets a higher score than y it is ranked higher.

Example 5.11: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b
a beats b. a beats c. c beats b.
a wins 2 votes. c wins 1 vote. b wins 0 votes.

a ≻∗ c ≻∗ b

a :, b :, c :

Example 5.12: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b
a wins 2 votes. c wins 1 vote. b wins 0 votes.

a ≻∗ c ≻∗ b

Example 5.13: Condorcet Cycle.
1: a ≻ b ≻ c
2: b≻ c ≻ a
3: c ≻ a ≻ b
All outcomes win one of their pairwise votes.

a ∼∗ b ∼∗ c

5.2.6 Borda

Plurality vote focuses on maximizing the number of people who get their favorite outcome and
veto attempts to minimize the number of people who get their least favorite outcome. What if
we want to create a rule that balances both of these goals? We can think of the Borda count as
a rule that attempts to balance both goals.

Definition 5.7: Borda Count. Each rank is assigned a certain number of points, with
higher ranks receiving more points. The option outcome with the highest total points
wins. If there are 3 outcomes, we might assign 3 for a first-rank, 2 for a second, and 1 for
a third.
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With Borda count, it is sort of “traditional” to assign a score of 1 for the last rank and work up
from there. For example, using scores of 3, 2, 1 for three outcomes. However, the outcome will
be the same regardless of what numbers we use as long as they are all one-apart. For example,
we could use 1, 0,−1.

Example 5.14: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b
a : 3 + 3 + 2 = 8
b : 2 + 1 + 1 = 4
c : 1 + 2 + 3 = 6

a ≻∗ c ≻∗ b

Example 5.15: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b
a : 11, b : 9, c : 10

a ≻∗ c ≻∗ b

5.3 Exercises

The following exercises make use of this example.

Example 5.16: Example 3.. There are five people and three outcomes. Their prefer-
ences are:
1: a ≻ b ≻ c
2: a ≻ b ≻ c
3: b ≻ c ≻ a
4: b ≻ c ≻ a
5: c ≻ a ≻ b

Exercise 5.1: Informally, what social preferences would you assign for this example and why?

Exercise 5.2: What social preferences result from applying Majority Rule to this example? Is
this an example of the Condorcet Paradox? How do you know?

Exercise 5.3: What social preferences result from applying Copeland’s Method to this exam-
ple?

Exercise 5.4: What social preferences result from applying Borda Count to this example
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where a top-ranked outcome gets a score of 1, a second-ranked outcome gets a score of 0 and a
last-ranked outcome gets a score of −1.

Exercise 5.5: Come up with your own preference aggregation rule and apply it to examples 1
and 2 from this section and example 3 above.

5.4 Key Topics

• Understand what a Social Preference Relation is and how it might be used.

• Understand what a Preference Aggregation Rule is.

• Know the following preference aggregation rules and how they work:

– Dictatorship

– Majority Rule

– Borda Count

• Be able to apply each of the preference aggregation rules above to determine social prefer-
ences for a given set of individual preferences as in Exercises 5.3 and 5.4.

• Know what the Condorcet Paradox is and be able to determine if Majority Rule leads
to an intransitive social preference as in Exercise 5.2.

6 Preference Aggregation Properties

6.1 Basic Properties

There are several properties that we might want in a rule. Let’s begin with two properties that
ensure that the resulting social preference relation is indeed a rational preference relation:

Definition 6.1: Complete. A preference aggregation rule is complete if ≿∗ is com-
plete for all profiles of individual preferences: (≿1, ... ≿n).

Definition 6.2: Transitive. A preference aggregation rule is transitive if ≿∗ is tran-
sitive for all profiles of individual preferences: (≿1, ... ≿n).

I hope I also argued that Pareto efficiency is a very desirable property. Let’s add that to the
mix. Here, we will write a property that says that the rule needs to respect Pareto dominance.
This definition will be given in the context of models where everyone has strict preferences.

Definition 6.3: Pareto Efficient. A preference aggregation rule is Pareto Efficient
if for every x and y such that for every person i ∈ P , x ≻i y then x ≻∗ y. That is, if
everyone likes x strictly better than y, then the social preference also strictly prefers x to
y.
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6.2 Classifying Preference Aggregation Rules

6.2.1 Dictatorship

Since a Dictatorship just uses an individual’s preferences as the social preference, it is always
complete and transitive. It is also Pareto efficient. If everyone likes x over y, so will the dictator,
and so x ≻∗ y. Thus, it is also Pareto efficient.

6.2.2 Unanimity

We have seen that Unanimity Rule is transitive, Pareto efficient (by definition), but it is not
complete.

6.2.3 Majority Rule

We have seen that Majority Rule is complete. It is also Pareto efficient. If everyone prefers
x to y then a more than a majority will vote for x, thus x ≻∗ y. However, due to the Condorcet
paradox it is not transitive.

6.2.4 Copeland’s Method

Copeland’s method is non-dictatorial since it uses the preferences of everyone to determine the
social preferences.

Info 6.1: Methods that use a Score are Complete and Transitive. Any rule that
uses a score is complete and transitive.

For these rules, if the score of an outcome is at least as high then x ≿∗ y. Since every pair
of outcomes gets a score we can compare every outcome. Similarly, if the score of x is higher
than y and the score of y is higher than z then the score of x is higher than z. Thus these
Since Copeland’s method assigns scores based on how many pair-wise votes an outcome wins, is
complete and transitive.

It is also Pareto efficient. To see this, suppose everyone prefers a to b. We need a ≻∗ b which
is true if a beats strictly more other outcomes in a pair-wise vote than b. But since preferences
are transitive, anyone who would vote for b over some other outcome, would also vote for a over
that outcome. Thus, a beats everything b does, plus it also beats b. Thus the score of a is larger
than b.

6.2.5 Borda

Borda count is non-dictatorial since it uses the preferences of everyone to determine the social
preferences.

Since the Borda count also assigns scores, it is complete and transitive.
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Finally, it is Pareto efficient since if everyone agrees that a ≻i b then a gets a higher score in
everyones preference than b. Thus the sum of the scores for a must be strictly higher than b and
so a ≻∗ b.

6.2.6 A Chart of Preference Aggregation Rules

Rule Complete Transitive Pareto
Dictatorship ✓ ✓ ✓

Unanimity Rule × ✓ ✓
Majority Rule ✓ × ✓

Copeland’s Method ✓ ✓ ✓
Borda Count ✓ ✓ ✓

Table 1: Comparison of Preference Aggregation Rules

6.3 Independence of Irrelevant Alternatives

There’s something a little weird about Copeland’s Method and Borda count...

Let’s stat with some preferences:

• Person 1: a ≻ b ≻ c

• Person 2: b ≻ a ≻ c

• Person 3: c ≻ a ≻ b

In both Borda and Copeland’s method, the social preferences are a ≻∗ b ≻∗ c. Let’s focus on
the fact that a ≻∗ b here. Let’s change person 2’s preference over a and c to be c ≻ a instead of
a ≻ c. We get

• Person 1: a ≻ b ≻ c

• Person 2: b ≻ c ≻ a

• Person 3: c ≻ a ≻ b

In both Borda and Copeland’s method, the social preferences are now a ∼∗ b ∼∗ c and a ∼∗ b.
But we did not change anything about anyone’s preferences over a and b, and yet the social
preference changed. When this is possible for a preference aggregation rule, we say it fails
Independence of Irrelevant Alternatives.

Definition 6.4: Independence of Irrelevant Alternatives. A preference aggrega-
tion rule obeys Independence of Irrelevant Alternatives [IIA] if for any two sets of
preferences where the preference for x and y is the same between the two sets, they should
have the same social preference between x and y.
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6.4 Why IIA Matters

6.4.1 Example: Borda Count

Suppose there are 100 in a society and there are three types of preferences:

• Type 1 (25 People): a ≻ b ≻ c

• Type 2 (40 People): b ≻ c ≻ a

• Type 3 (35 People): c ≻ a ≻ b

In Borda Count, the social preferences are c ≻∗ b ≻∗ a since the scores are:

• a: 25 ∗ 3 + 40 ∗ 1 + 35 ∗ 2 = 185

• b: 25 ∗ 2 + 40 ∗ 3 + 35 ∗ 1 = 205

• c: 25 ∗ 1 + 40 ∗ 2 + 35 ∗ 3 = 210

But if we remove a. Preferences are:

• Type 1 (25 People): b ≻ c

• Type 2 (40 People): b ≻ c

• Type 3 (35 People): c ≻ b

In Borda Count, the social preferences are b ≻∗ c since the scores are:

• b: 25 ∗ 2 + 40 ∗ 2 + 35 ∗ 1 = 165

• c: 25 ∗ 1 + 40 ∗ 1 + 35 ∗ 2 = 135

6.4.2 Example: Copeland’s Method

In Copeland’s method, we can get similar oddities.

• Type 1 (45 People): a ≻ b ≻ c

• Type 2 (15 People): b ≻ c ≻ a

• Type 3 (40 People): c ≻ b ≻ a

In Copeland’s Method, the social preferences are c ≻∗ b ≻∗ a since b beats a, b beats c, c beats
a.

Let’s remove a.

• Type 1 (45 People): b ≻ c
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• Type 2 (15 People): b ≻ c

• Type 3 (40 People): c ≻ b

In Copeland’s Method, the social preferences are b ≻∗ c. Again, we get a reversal!

6.5 Arrow’s Impossibility

Rule Complete Transitive Pareto IIA
Dictatorship ✓ ✓ ✓ ✓

Unanimity Rule × ✓ ✓ ✓
Majority Rule ✓ × ✓ ✓

Copeland’s Method ✓ ✓ ✓ ×
Borda Count ✓ ✓ ✓ ×

Table 2: Comparison of Preference Aggregation Rules

Our goal in this whole process was to look for rule that built on Pareto efficiency but also filled
in the gaps to create a complete and transitive social preference relation. We found two options
in Borda and Copeland’s method. Unfortunately, we ran into a new problem. IIA.

So far, the only thing we have seen that meets all of our assumptions is a dictatorship! As it
turns out, that is the only preference aggregation rule that is complete and transitive, Pareto
efficient, and does is not susceptible to violations of IIA.

Info 6.2: Arrow’s Impossibility Theorem. If there are at least three outcomes, the
only preference aggregation rule that is complete, transitive, Pareto efficient, and
does not violate IIA is a dictatorship!

6.6 Exercises

In Plurality Vote the preference aggregation rule, the score of an outcome is the number
of people who rank that outcome highest. Social preferences are determined by score. See
subsection A.1 for more info.

In Veto, the score of an outcome is the negative of the number of people who rank it last. Social
preferences are determined by the score as in the other scoring methods above with a higher
score being ranked higher. See subsection A.2 for more info.
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Rule Complete Transitive Pareto IIA
Dictatorship ✓ ✓ ✓ ✓

Unanimity Rule × ✓ ✓ ✓
Majority Rule ✓ × ✓ ✓

Copeland’s Method ✓ ✓ ✓ ×
Borda Count ✓ ✓ ✓ ×
Plurality Vote ✓ ✓ × ×

Veto ✓ ✓ × ×

Table 3: Comparison of Preference Aggregation Rules

Exercise 6.1: Ask ChatGPT or another AI of your choice to provide an example of a prefer-
ence aggregation rule that meets completeness, transitivity, Pareto efficiency, and IIA. Can you
convince it to lie to you? If so, provide the prompt you used.

Exercise 6.2: As shown in the table above Plurality Vote is not Pareto efficient and it does
not obey IIA. Come up with counter-examples using three people and three outcomes a, b, c that
show it does not meet these properties.

Exercise 6.3: As shown in the table above Veto is not Pareto efficient and it does not obey
IIA. Come up with counter-examples using three people and three outcomes a, b, c that show it
does not meet these properties.

Exercise 6.4: Come up with a preference aggregation rule that is complete, transitive, IIA,
but not Pareto efficient.

6.7 Key Topics

• Know what it means for a preference aggregation rule to:

– be Complete

– be Transitive

– be Pareto Efficient

– respect Independence of Irrelevant Alternatives [IIA]

• Know that any rule that assigns social preferences based on some score (as in Borda count)
will always be complete and transitive.

• Given a preference aggregation rule that is not Pareto efficient, come up with an counter-
example demonstrating this as in Exercises 6.2 and 6.3.

• Given a preference aggregation rule that is not IIA, come up with an counter-example
demonstrating this as in Exercises 6.2 and 6.3.

• Know what Arrows impossibility theorem for Preference Aggregation rules says, what prop-
erties can only be met by a dictatorship, and what those properties mean.
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7 Making Choices

Preference aggregation rules produce a preference relation. In most real-world situations, we do
not need a preference relation, we just need to make a choice. There is a concept related to
preference aggregation rules that has the focus not of making a preference relation, but rather
just making a choice. We call these social chocie functions.

Definition 7.1: Social Choice Function. A social choice function (also known as
a social welfare function) is a way to turn individual preferences into a choice. Formally,
it is a mapping from the set of possible individual preferences over the outcomes into an
outcome or subset of the outcomes- the choice/choices. That is, from the set of possibilities,
it picks a winner or winners (if there are ties).

7.1 Social Choice from Preference Aggregation

We learned in section 1 that when a preference relation is complete and transitive, we can use it
to make a choice from any subset of the outcomes through the notion of best outcomes. Recall
from Definition 1.10 that an outcome x is best from some set B according ≿ if for every other
y in the set B, x ≿ y. That is, x is best from a set if it is preferred to all other outcomes in the
set.

In this sense, if a preference aggregation rule results in a complete and transitive social preference
relation ≿∗, we can use that relation to make a choice from any subset of the outcomes. In this
sense, every preference aggregation rule is a social choice function.

Info 7.1: Social Choice Functions from Preference Aggregation Rule. Any
preference aggregation rule can be converted into a social choice function by taking the
best outcomes from the resulting social preference relation.

However, some social choice functions are more suited towards picking a winner than creating
an entire preference ordering, and the properties we look for in a social choice function are not
the same as those of a preference aggregation rule.

7.2 Some Social Choice Functions

7.2.1 Dictatorship- Social Choice

Definition 7.2: Dictatorship. Pick a person i ∈ P . The social choice is that person’s
favorite outcome.

Example 7.1: Example 1. Let’s assume person 1 is the dictator. 1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b
The social choice is a.
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Example 7.2: Example 2. Assume person 1 is the dictator. 1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b
The social choice is a.

7.2.2 Unanimity Rule- Social Choice

The unanimity rule is a social choice function that selects an outcome if it is unanimously
preferred over another by all individuals.

Definition 7.3: Unanimity Rule- Social Choice. Choose x if for every person and
for all other outcomes y x ≻i y for everyone. That is, an outcome is chosen if everyone
thinks it is better than every other outcome.

Example 7.3: Example 1. 1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b
The social choice is a.

Example 7.4: Example 2. 1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b
Unanimity gives no choice here.

7.2.3 Plurality Vote- Social Choice

Plurality vote focuses on the goal of giving as many people as possible their top-ranked outcome.

Definition 7.4: Plurality Vote- Social Choice. The social choice is the outcome
which the most number of people rank first.

Example 7.5: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

a is the social choice.
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Example 7.6: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

a is the social chocie.

7.2.4 Borda Count- Social Choice

The Borda count is a social choice function that balances the preferences of individuals by
assigning points to ranks. Higher ranks receive more points, and the outcome with the highest
total points is chosen.

Definition 7.5: Borda Count- Social Choice. Each rank is assigned a certain num-
ber of points, with higher ranks receiving more points. The outcome with the highest
total points is the social choice. If there are 3 outcomes, for example, we might assign 3
points for a first-rank, 2 points for a second, and 1 point for a third.

Example 7.7: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

Scores:
a : 3 + 3 + 2 = 8
b : 2 + 1 + 1 = 4
c : 1 + 2 + 3 = 6
a is the social choice.

Example 7.8: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

Scores:
a : 3 + 3 + 1 + 2 = 9
b : 2 + 2 + 3 + 1 = 8
c : 1 + 1 + 2 + 3 = 7

a is the social choice.
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7.3 Exercises

The following exercises make use of this example.

Example 7.9: Example 3.. There are five people and three outcomes. Their prefer-
ences are:
1: a ≻ b ≻ c
2: a ≻ b ≻ c
3: b ≻ c ≻ a
4: b ≻ c ≻ a
5: c ≻ a ≻ b

Exercise 7.1: What choice/choices result from applying Plurality Vote- Social Choice to this
example?

Exercise 7.2: What choice/choices result from applying Borda Count- Social Choice to this
example?

The Veto social choice function chooses the outcome/s that the fewest number of people rank
last.

Exercise 7.3: What choice/choices result from applying Veto- Social Choice to this example?

7.4 Key Topics

• Understand what a Social Choice Function is and how it differs from an preference
aggregation rule.

• Know the following social choice functions and how they work:

– Dictatorship

– Plurality Vote

– Borda Count

• Be able to apply each of the social choice functions above to determine social choices a
given set of individual preferences as in Exercises 7.1 and 7.2.

• Given a description of a simple social choice function not in the list above determine social
choices a given set of individual preferences as in Exercises 7.3.

8 Social Choice Function Properties

8.1 Basic Properties

A preference aggregation rule results in a preference relation. For such a relation to be capable
of making choices from any subset of outcomes, it needs to be complete and transitive. However,
a social choice function only needs to pick a winner or winners from the entire set of alternatives.
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We can replace completeness and transitivity with the following property:

Definition 8.1: Nonempty. A social choice function is nonempty if the set of choices
is nonempty for all profiles of individual preferences: (≿1, ... ≿n).

In preference aggregation rules, if there is an outcome y such that there is another x that everyone
strictly prefers to y, then y could never be ranked highest since Pareto efficiency of the social
welfare function will require x ≻∗ y. In that sense, y should also never win– it should never be
the choice. That leads to the following extension of Pareto efficiency to social choice functions.
This says that if y is strictly Pareto dominated, it cannot be chosen.

Definition 8.2: Pareto Efficient. A social choice function is Pareto Efficient if for
every y where there is another outcome x such that every person i ∈ P , x ≻i y then y
cannot be in the set of choies. That is, if everyone likes x strictly better than y, then the
social preference also strictly prefers x to y.

Lastly, we can extend independence of irrelevant alternatives to social choice functions:

Definition 8.3: Independence of Irrelevant Alternatives. A social choice function
obeys Independence of Irrelevant Alternatives [IIA] if for any two sets of preferences
where the preference for x and y is the same between the two sets, if x is chosen in in the
first set and y is not, then y cannot be chosen in the second set.

8.2 Classifying Social Choice Functions

8.2.1 Unanimity and Majority

Among the social choice functions we looked at above, Unanimity and Majority Vote are
not nonempty. For instance, neither pick a winner under the Condorcet paradox preferences
below:

1: a ≻ b ≻ c

2: b ≻ c ≻ a

3: c ≻ a ≻ b

There is no outcome that is unanimously better than all others, so unanimity does not pick a
choice. Similarly, majority vote results in an intransitive cycle where a ≻∗ b, b ≻∗ c, c ≻∗ a, thus
there is no outcome at least as good as all others.

They are, however, Pareto efficient and IIA.

8.2.2 Plurality Vote

Since some outcome always wins the plurality vote, it is nonempty.

Plurality vote is Pareto efficient because if some outcome x is preferred by everyone to y, then
y cannot be anyone’s favorite. Thus, it cannot win.
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Plurality vote is not IIA. Consider the following sets of preferences:

Set 1:

1: a ≻ b ≻ c

2: a ≻ b ≻ c

3: b ≻ a ≻ c

Set 2:

1: a ≻ b ≻ c

2: c ≻ a ≻ b

3: b ≻ a ≻ c

a is the choice in the first set, and a and b are the chocie in the second set even though everyon
has the same preferences over a and b. This violates IIA.

8.2.3 Borda

Since some outcome always wins the Borda count, it is nonempty.

It is Pareto efficient since if x is strictly prefered by everyone over y, x must get a strictly higher
score, thus, y cannot get the highest score and be a chocie.

It is not IIA. Consdier the following sets of preferences:

Set 1:

• 1: a ≻ b ≻ c

• 2: b ≻ a ≻ c

• 3: c ≻ a ≻ b

Set 2:

• 1: a ≻ b ≻ c

• 2: b ≻ c ≻ a

• 3: c ≻ a ≻ b

a is the choice in set 1, but a, b and c are all choices in set 2. This violates IIA.

8.2.4 A Chart of Social Choice Functions

8.3 Why IIA Matters for Social Choice

This example is identical to the example used to show why IIA matters for preference aggregation.
I have duplicated it here for convenience.

Suppose there are 100 in a society and there are three types of preferences:
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Rule Nonempty Pareto IIA
Dictatorship ✓ ✓ ✓

Unanimity Rule × ✓ ✓
Majority Rule × ✓ ✓
Plurality Vote ✓ ✓ ×

Borda ✓ ✓ ×

Table 4: Comparison of Social Choice Functions

• Type 1 (25 People): a ≻ b ≻ c

• Type 2 (40 People): b ≻ c ≻ a

• Type 3 (35 People): c ≻ a ≻ b

In Borda Count, the choice is c since the scores are:

• a: 25 ∗ 3 + 40 ∗ 1 + 35 ∗ 2 = 185

• b: 25 ∗ 2 + 40 ∗ 3 + 35 ∗ 1 = 205

• c: 25 ∗ 1 + 40 ∗ 2 + 35 ∗ 3 = 210

But if we remove a. Preferences are:

• Type 1 (25 People): b ≻ c

• Type 2 (40 People): b ≻ c

• Type 3 (35 People): c ≻ b

In Borda Count, the choice is b since the scores are:

• b: 25 ∗ 2 + 40 ∗ 2 + 35 ∗ 1 = 165

• c: 25 ∗ 1 + 40 ∗ 1 + 35 ∗ 2 = 135

8.4 Arrow’s Impossibility Again

Arrow’s impossibility theorem says only a dictatorship can aggregating preferences in a way that
is complete, transitive, Pareto efficient and respects IIA. A preference aggregation rule creates
a social preference that lets a decision-maker make a choice from any subset of the outcomes.
That’s what a preference relation is good for. It might seem like if we were not worried about
being able to make a choice from every subset, but just wanted to make a choice from the whole
set of outcomes, it might be easier to find a suitable rule.

Notice in the chart above that even though all a social choice function has to do is pick a winner,
we cannot seem to get one that has the three properties we might want. In fact, it is still
impossible.
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Info 8.1: Arrow’s Impossibility Theorem for Social Choice. If there are at least
three outcomes, the only social choice function that is nonempty, Pareto efficient, and
does not violate IIA is a dictatorship!

As far as I can tell, this result was formalized by Denicolò Vincenzo in [1].

8.5 exercises

Exercise 8.1: Describe Arrow’s impossibility theorem as it applies to social choice functions
in three paragraphs to someone who has never taken economics or mathematics. Be sure to
describe the properties that cannot simultaneously be achieved in as simple terms as possible.

Exercise 8.2: Write down a counter-example using three people and three outcomes a, b, c
showing that Majority rule the social choice function is not nonempty.

Exercise 8.3: Write down a counter-example using three people and three outcomes a, b, c
showing that Unanimity rule the social choice function is not nonempty.

Exercise 8.4: Write down a counter-example using three people and three outcomes a, b, c
showing that Plurality vote the social choice function is not IIA.

Exercise 8.5: Write down a counter-example using three people and three outcomes a, b, c
showing that Borda count the social choice function is not IIA.

The veto rule chooses the outcome or outcomes that are the least favorite of the fewest number
of people.

Exercise 8.6: Write down a counter-example using three people and three outcomes a, b, c
showing that Veto the social choice function is not Pareto efficient.

8.6 Key Topics

• Know what it means for a social choice function to:

– be Nonempty

– be Pareto Efficient

– respect Independence of Irrelevant Alternatives [IIA]

• Given a social choice function from the list in they key topics of Chapter 7 or based on a
simple description that is not nonempty, come up with an counter-example demonstrating
this as in Exercises 8.2 and 8.3.

• Given a social choice function from the list in they key topics of Chapter 7 or based on
a simple description that is not Pareto efficient, come up with an counter-example
demonstrating this as in Exercises 8.6.
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• Given a social choice function from the list in they key topics of Chapter 7 or based
on a simple description that does not respect IIA, come up with an counter-example
demonstrating this as in Exercises 8.4 and 8.5.

• Know what Arrows impossibility theorem for Social Choice Functions says, what properties
can be met only by a dictatorship, and what those properties are.

9 Strategic Voting

So far we have we have looked at instances where preferences are known. But what happens if
preferences are not known? We have to collect them from constituents.

Let’s add one more property to the mix. Arrow’s impossibility theorem says that even if we
allow ties for the ”choice” then there is no social choice function that always makes choice that
is IIA and Pareto efficient.

However, in the real world, some outcome actually needs to get chosen. A real-world social
choice function needs to have a way of breaking ties. Any social choice function that breaks ties
and just picks one outcome is called decisive:

Definition 9.1: Decisive. A social choice function is decisive if there is always a single
choice for all profiles of individual preferences: (≿1, ... ≿n).

Note that decisiveness is stronger than nonempty. For a rule to be decisive, it has to be
nonempty and there always has to be just one choice. Most real-world social choice functions
have some built-in tie-breaking rule. However, we can also easily convert any non-empty social
choice function into a decisive one by adding a simple tie-breaking rule. Below, I will use the
rule that breaks ties by choosing the outcome lowest in the alphabet.

For example suppose we have the following preferences:

1: a ≻ b ≻ c

2: b ≻ c ≻ a

3: c ≻ a ≻ b

Plurality Vote is not decisive since there is a tie for number of first place votes between a
and b and c. However, if we add a tie-breaking rule that the outcome lowest in the alphabet wins
any tie then the rule is decisive. The choice will be a.

Definition 9.2: Plurality Vote with Alphabetical Tie-Breaker. The social choice
is the outcome which the most number of people rank first. If there is a tie, the outcome
lowest in the alphabet wins.

9.1 Manipulation

In the example above, notice that if person 2 changed their vote to c instead of b by pretending
to have preferences c ≻ b ≻ a then c would win instead, and person 3 likes this better!
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This is an example of manipulation.

Definition 9.3: Non-manipulable. A social choice function is Non-manipulable if
no individual can ever achieve a more preferred outcome by misrepresenting their prefer-
ences.

Manipulation can undermine the fairness and accuracy of voting outcomes. It can lead to sce-
narios where the chosen outcome does not reflect the true preferences of the voters.

9.2 Another Impossibility

Arrow’s impossibility (See Info Box 6.2 and Info Box 8.1) says that we have to be ok with either
relaxing Pareto efficiency or IIA. Suppose we were ok with relaxing IIA– I think it is the more
natural option to give up. There are many social choice rules that are decisive and Pareto
efficient.

For instance, Plurality Vote with Alphabetical Tie-Breaker orBorda with Alphabetical
Tie-Breaker are both Pareto efficient and decisive. However, they are also both manipulable.
We have seen that in the example above for Plurality vote with Alphabetical Tie-Breaker, but
the same example works for Borda count. Person 2 would still like to pretend to have preferences
c ≻ b ≻ a giving the win to outcome c instead of outcome a.

As it turns out, as long as a social choice rule is Pareto efficient and decisive we will always
be able to find an example where the rule can be manipulated.

Info 9.1: Gibbard-Satterthwaite. If there are at least three outcomes, the only social
choice function that is decisive, Pareto efficient, and non-Manipulable is a dicta-
torship!

9.3 Exercises

Exercise 9.1: Describe the Gibbard-Satterthwaite theorem in simple terms as-if explaining it
to someone who has never studied economics or mathematics before.

Exercise 9.2: Provide an example with 5 people and 3 outcomes where someone can manipulate
their preferences and make the chosen outcome better for themselves in Plurality Vote where
ties are broken by their alphabetical order.

Exercise 9.3: Provide an example with 3 people and 3 outcomes where someone can manipulate
their preferences and make the chosen outcome better for themselves in Borda Count where
ties are broken by their alphabetical order.

9.4 Key Topics

• Know what it means for a social choice function to:
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– be Decisive

– be Non-Manipulable

• Come up with an example of manipulation given individual preferences and a social choice
function with tie-breaking rule as in Exercises 9.2 and 9.3.

• Know what the Gibbard-Satterthwaite theorem says, what properties can be met only by
a dictatorship, and what those properties are.
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Part III

Appendix

A Optimization

A.1 Unconstrained One-Dimensional Optimization

Optimization involves finding the minimum or maximum of a function f(x). Here, we focus on
instances where f is one-dimensional. The goal is to determine the value of x that maximizes
(or minimizes) f(x). Unconstrained means that we will not place any restrictions on what x can
be.

Imagine that you are hiking on a mountain trail. If the slope of the trail is positive, then moving
forward will bring you to a higher point. If the slope of the trail is negative, then moving
backward will bring you to a higher point. Thus, the slope must be zero at the peak. This
is demonstrated in Figure Figure A.1.

Figure A.1: Slope is Zero at the Peak

x

f(x)

Flat!

One issue with using this fact to find a maximum is that the slope can also be zero at a minimum
and also at places that are “local” maxima.
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Figure A.2: Not every point of zero slope is a global maximum!
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To account for this, we should remember that when we find a point of zero slope, it is only a
candidate for a global maximum.

Info A.1: Unconstrained Optimization. How to find the unconstrained maximum
of a one-dimensional function: For a function f(x):

1. Find the first derivative f ′(x).

2. Set the first derivative to zero: f ′(x) = 0.

3. Solve for x. These are your candidates.

4. Which, if any is a global max?

A.2 Unconstrained Multi-Dimensional Optimization

The intuition of the slope being zero at the maximum holds even when there are multiple direc-
tions in which you can move. Imagine trying to find the peak of a mountain when you are not
on a trail. You can move east/west or north/south. In fact, you can also move in combinations
of these directions, like the northwest. But at the peak, you better not be able to move east-
/west and get to a higher altitude. The slope has to be zero in the east/west direction.
Similarly, the slope has to be zero in the north/south direction. One of the nice things
about smooth functions is that if the slope is zero in these two cardinal directions, it will be zero
even if you try to move northwest, or southeast, or any other direction. Figure A.3 demonstrates
this. Notice that at the peak, the slope is zero in both the x direction and the y direction, and
also in all other directions.
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Figure A.3: Slope is Zero in All Directions!
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Info A.2: Unconstrained Multi-Dimensional Optimization. To maximize a func-
tion f(x) where x = (x1, x2, . . . , xn):

1. Find all partial derivatives
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
.

2. Set all partial derivatives to zero: ∂f
∂xi

= 0.

3. Solve the resulting system of equations for (x1, ..., xn). These solutions are your
candidates.

4. Determine which, if any, of these solutions is a global maximum.
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Example A.1: Unconstrained Maximum. Maximize 100− (x− 10)2 − (y − 10)2.
Let’s look at this function first. The global maximum (black dot) occurs where x = 10
and y = 10.
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Now, we confirm that this is the maximum formally using the procedure in A.2. The

partial derivatives are f(x,y)
x = −2(x− 10) and f(x,y)

y = −2(y − 10).
Setting these to zero, we get the equations:

f(x, y)

x
= −2(x− 10) = 0

f(x, y)

y
= −2(y − 10) = 0

Solving these gives us the (x, y) where the function has zero slope. The only solution is
x = 10, y = 10.
We can see by inspecting the function that this must be the global maximum.

A.3 Constrained Multi-Dimensional Optimization

Suppose that we want to maximize a function f(x, y) (the objective) but where the set of x
and y we can choose from is constrained in some way (the constraint).

Let’s have a look at how adding a constrained complicates Example A.1.
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Example A.2: Constrained Maximum. Maximize 100−(x−10)2−(y−10)2 subject
to x+ y ≤ 10.
Let’s look at this function first. As we found in Example A.1, the global maximum (black
dot) occurs where x = 10 and y = 10, but that violates the constraint since 10 + 10 > 10.
We are not allowed to go past the red line. The maximum within that area occurs at
x = 5 and y = 5 (green dot).

Figure A.4: 3d Plot of 100− (x− 10)2 − (y − 10)2
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How should we formalize the process of finding the constrained optimum? Let’s work through a
few concepts and return to this example later in the chapter.

A.4 Contours

It can be very useful to think of three-dimensional plots in terms of their contours. Figure A.5
shows a real-world example of how contours are used on a topographic map, which is a 2d map
that includes information about elevation through contour lines. Look at the line labeled “1000”
near Cady Hill. This is a line connecting places that all have an elevation of 1000 feet.
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Figure A.5: A topographic map of Stowe Mountain.

Taken from the public domain USGS Digital Raster Graphic
file o44072d6.tif for the Stowe, VT quadrangle.

Let’s add some contours to our function at an “elevation” of 25, 50, 75, and 99 (right near the
peak). In the context of mathematics, this is known as a “contour” plot.

Figure A.6: A function and its contours.
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A.5 Monotonicity

Imagine standing at the point (0, 0) on the function plotted in Figure A.6. If you walk in the
northwest direction (increasing x and y) the function increases. That is, you are increasing in
elevation. In fact, this is true whenever 0 ≤ x ≤ 10 and 0 ≤ y ≤ 10. Figure A.7 shows a plot
of the function in Example A.2 limited to this region. Notice how the function always slopes up
when moving in the northwest direction regardless of where you are.

Figure A.7: 3d Plot of 100− (x− 10)2 − (y − 10)2 where x ≤ 10 and y ≤ 10.
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When a function increases when you increase all of its variables, we say that it is monotonic. As
we will see, this property comes in handy.

Definition A.1: Monotone. f(x, y) is said to be monotone when:

1. x′ ≥ x and y′ ≥ y implies f(x′, y′) ≥ f(x, y).

2. x′ > x and y′ > y implies f(x′, y′) > f(x, y).

A.6 Three Possibilities for an Optimal Point

Let’s continue looking at Example A.2. Let’s look at the contour plot where x ≤ 10 and y ≤ 10
and add the line x+ y = 10. This is shown in Figure A.8.

58



Figure A.8: Contour plot with constraint.
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Here, the constraint is the area southwest of the red line. The red line is the ”boundary” of the
constraint, and the area to the south-west of that line is called the interior of the constraint. For
example, the points b and c are on the boundary of the constraint and c is on the interior.

First, notice that point c could never be optimal. Why? If we are on the interior, we could
always move up and to the right a little (increasing both x and y) and still meet the constraint.
Since the function is monotonic, the result must be better! Here, for example, we could move
from c to a. Thus, we can see that if a function is monotonic, the optimal point cannot be on
the interior of the constraint. But it has to meet the constraint. Thus, when a function is
monotonic, the optimal point must be on the boundary of the constraint.

The point b is on the boundary. Can it be optimal? No, it is on the same contour as c. Because
c cannot be optimal, neither can b. They have the same value. This shows us that a point like
b, which is on a contour that passes through the interior of the constraint, can never be optimal.

What we have seen so far is that whatever point is optimal must be on the boundary of the
constraint and not on a contour that passes into the interior of the constraint. The only way for
this to happen is if the contour at the optimal point just touches the constraint. See point c for
instance. When the contours are smooth, the only way for this to happen is if the contour and
the constraint have the same slope.

There are only three possibilities for an optimal point. These are enumerated below.
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Info A.3: Three Possibilities for a Constrained Optimum. When the objective
is monotonic, the optimum must meet one of the following three conditions.

1. (Tangent) It is at a point where the contour of the objective at that point had the
same slope constraint.

2. (Touching but not Smooth) The point is a “non-smooth” point on the contour
of the objective, but the that point just touches the constraint.

3. (Boundary) The point is at one of the boundaries of the constraint.

A.7 Slopes of Contours

Many of the optimization problems we will encounter in this course will be ”smooth”. In that
case, the first possibility ”tangent” from box A.3 is relevant. To find such a tangency point, we
need to know how to find the slopes of functions.

In most cases, we will be dealing with functions of just two variables. For instance, lines like
ax1+ bx2 = 10 or non-linear functions like x2

1x
2
2 = 10. How do we find the slope of functions like

these at particular points?

For the linear case ax1 + bx2 = 10, we can put it in the conical form of a line x2 = −a
bx1 +

10
b

then read the slope right off. Here it is a
b and since this is a line, that is the slope at every point

on the function. But what about a nonlinear function like x2
1x

2
2 = 10? That slope depends on

the point you are considering. Here is a plot.

Figure A.9: Plot of x2
1x
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We can use something called the implicit function theorem to find the slope, but let’s work
through it intuitively before I give you the general result.

The slope of a function is really measuring something like this: When you move horizontally a
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little, how much do you have to move vertically to get back to the function? For a line with a
slope of −1 if you move to the right by one unit, you have to move down by one unit to get back
on the function. Look at the plot above. When x1 is small and x2 is large, if you move to the
right a little, you have to move down a lot to get back to the function. If x1 is large but x2 is
small, if you move to the right a little, you don’t have to move down much at all to get back to
the function.

A function like x2
1x

2
2 = 10 defines a set of points (x1, x2) that all meet some condition. Here, the

value of the function f(x1, x2) = x2
1x

2
2 in the set of points is equal to 10.

The partial derivative of f with respect to x1 tells us how much f changes when we increase x1

a little. This is denoted by ∂f
∂x1

. The partial derivative with respect to x2, denoted
∂f
∂x2

tells us
how much f changes when we increase x2 by a little.

Suppose ∂f
∂x1

= 1 and ∂f
∂x2

= 1. Roughly, if we increase x1 by a little, f() increases by 1 unit.
What do we have to do to get back to the function? We cannot increase x2. That will only make
f() even bigger. We have to decrease x2 by one unit. The slope is −1.

Suppose ∂f
∂x1

= 1 and ∂f
∂x2

= 2. Roughly, if we increase x1 by a little, f() increases by 1 unit.
What do we have to do to get back to the function? If we decrease x2 by one unit, f() will
decrease by 2. That’s too much! Instead, we decrease it by 1

2 . Then f() will decrease by 1. The
slope is − 1

2 .

Finally, suppose ∂f
∂x1

= 1 and ∂f
∂x2

= 1
2 . Roughly, if we increase x1 by a little, f() increases by 1

unit. What do we have to do to get back to the function? If we decrease x2 by one unit, f() will
be decreased by 1

2 . That is not enough! Instead, we decrease it by 2. Then f() will decrease by
1. The slope is −2.

Note that in each case, we find that the slope is the negative of the ratio of the partial
derivatives. That is a general result.

Info A.4: Slope of an Implicit Function. The slope of a function f(x1, x2) = y at

the point (x1, x2) is −
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

.

A.8 Solution - Two Dimensional Constrained Optimization

Now that we know how to find the slope of implicit functions, we have an easy way to find places
where the slope of the contour is the same as the slope of the constraint.

Definition A.2: First-Order Condition. For maximizing f() subject to g() ≤ c, the
first-order condition is:

−
∂f(x1,x2)

∂x1

∂f(x1,x2)
∂x2

= −
∂g(x1,x2)

∂x1

∂g(x1,x2)
∂x2

.

Notice that the first-order condition gives us just one equation (the number of variables). But
the optimal point has two unknowns. This is not enough for the optimal point. Fortunately, we
already know something else about the optimal point. It must occur on the constraint.
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Info A.5: Solving a Constrained Maximum. To solve a constrained maximum
problem:

1. Find −
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

and −
∂g(x1,x2)

∂x1
∂g(x1,x2)

∂x2

2. Simplify −
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

= −
∂g(x1,x2)

∂x1
∂g(x1,x2)

∂x2

.

3. Plug the result into the constraint to get the solution.

A.9 Gradients

All of the above assumed we are maximizing a two-dimensional function f(x, y). There, we can
find a place where the slope of a contour is equal to the slope of the constraint using the formula
in Info Box A.4. But for functions with more variables like f(x, y, z) it is more convenient to
instead calculate the gradient of the objective and constraint. What is that?

Definition A.3: Gradient. The gradient of a function is a vector that points in the
direction of the fastest rate of increase of the function. It is denoted by ∇f and is the
vector of partial derivatives of the function:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
where f is a function of n variables x1, x2, . . . , xn.

Info A.6: Gradients are Perpendicular to Contour. The gradient of the function
is always perpendicular to the contour lines. This is because the gradient points in the
direction of the steepest ascent, while the contour lines represent points of zero ascent.

In summary, the gradient ∇f is perpendicular to the contour lines of the function f , and its
magnitude indicates the rate of change of the function in the direction of the gradient.

A.10 First Order Condition and Solution

Now that we know that the gradient of a function at some point is always perpendicular to the
contour of a function at some point, we have an easy way to find places where the slope of the
contour is the same as the slope of the constraint.
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Definition A.4: First-Order Condition. For maximizing f() subject to g() ≤ c, the
first order condition is:

∇f(x) = λ∇g(x) (1)

where ∇f(x) is the gradient of the objective function, ∇g(x) is the gradient of the con-
straint function, and λ is just some number.
This is equivalent to the following n equations:

∂f

∂x1
=λ

∂g

∂x1

∂f

∂x2
=λ

∂g

∂x2

...

∂f

∂xn
=λ

∂g

∂xn

(2)

The λ comes from the fact that the two gradients need not have the same magnitude, only
the same direction! The λ allows their magnitude to differ.

Notice that the first-order condition gives us n equations (the number of variables). But the
optimal point has n unknowns. This is not quite enough for the optimal point. Fortunately, we
already know something else about the optimal point. It must occur on the constraint.

Info A.7: Solving a Constrained Maximum. To solve a constrained maximum
problem with n variables.

1. For each variable x1, x2, ..., xn. Find
∂f
∂xi

and ∂g
∂xi

.

2. Solve the resulting first-order condition, together with the constraint.

∂f

∂x1
=λ

∂g

∂x1

∂f

∂x2
=λ

∂g

∂x2

...

∂f

∂xn
=λ

∂g

∂xn

g(x1, x2, ..., xn) =c

(3)

A.11 Lagrange

Notice that first-order condition for constrained optimization involves the n equations of the
form:

∂f

∂xi
= λ

∂g

∂xi
(4)

... together with the constraint g(x1, x2, ..., xn) = c.
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As it turns out, there is always an unconstrained optimization problem that has the exact same
first-order conditions. That is, the optimization of the following Lagrange function for variables
x1, x2, ..., xn, λ.

L = f(x1, x2, ..., xn)− λ(g(x1, x2, ..., xn)− c). Recall above that the first-order condition for an
unconstrained problem is just that all the first derivatives have to be zero.

Taking those first , we get something familiar:

∂f

∂x1
− λ

∂g

∂x1
=0

∂f

∂x2
− λ

∂g

∂x2
=0

...

∂f

∂xn
− λ

∂g

∂xn
=0

g(x1, x2, ..., xn)− c =0

(5)

These can be rearranged exactly to the first-order conditions of the constrained optimization
problem.

A.12 Examples

Let’s work through Example A.2 using the Lagrange method.

Example A.3: Solution to Example A.2.
We have our objective: 100− (x− 10)2 − (y − 10)2 and our constraint x+ y ≤ 10.
We begin by turning this constrained optimization into the unconstrained optimization
problem of the Lagrange function:
L(x, y) = 100− (x− 10)2 − (y − 10)2 − λ(x+ y − 10)
Now we find the first-order conditions of this unconstrained problem with respect to the
three variables x, y, λ. These are:

−2(x− 10)− λ = 0

−2(y − 10)− λ = 0

x+ y − c = 0

We can solve these three equations by first eliminating λ from the first two equations:

−2(y − 10) = −2(x− 10)

x = y

Now we plug this into the third (constraint) equation x+ y = 10 to get:

x = 5

y = 5
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A.13 Exercises

Assume for each of the following problems that x ≥ 0 and y ≥ 0.

Exercise A.1: Maximize the function f(x) = −x2 + 4x+ 4.

Exercise A.2: Maximize the function f(x) = ln(x)− 1
4x+ 4.

Exercise A.3: Maximize the function f(x, y) = −x2 − y2 + 2x+ 2y.

Exercise A.4: Maximize the function f(x, y) = x+ y subject to the constraint x+ 2y ≤ 60.

Exercise A.5: Maximize f(x, y) = xy subject to the constraint x+ 2y ≤ 60.

Exercise A.6: Maximize the function f(x, y) = x
1
2 +y

1
2 subject to the constraint x+2y ≤ 60.

Exercise A.7: Maximize the function f(x, y) = min{x, y} subject to the constraint x+ 2y ≤
60.

Exercise A.8: Solve the constrained maximization problem in Example A.2 but change the
constraint to x+ 2y ≤ 10

A More Preference Aggregation Rules

A.1 Plurality Vote

Plurality vote focuses on the goal of giving as many people as possible their top-ranked outcome.
Because of this, it throws away most of the information about preferences and just focuses on
the top of each individuals’ ranking.

Definition A.1: Plurality Vote. The score of an outcome is the number of people
who rank that outcome highest. Social preferences are determined by score.

Example A.1: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

Scores. a : 2, b : 0, c : 1

a ≻∗ c ≻∗ b
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Example A.2: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

Scores. a : 2, b : 2, c : 1

a ∼∗ b ≻∗ c

A.2 Veto

While plurality vote attempts to maximize the number of people who get their favorite outcome,
this method attempts to do the opposite: minimizing the number of people who get their least
favorite outcome.

Definition A.2: Veto. The score of an outcome is the negative of the number of people
who rank it last. Social preferences are determined by the score as in the other scoring
methods above with a higher score being ranked higher.

Example A.3: Example 1.
1: a ≻ b ≻ c
2: a ≻ c ≻ b
3: c ≻ a ≻ b

Scores. a : 0, b : −2, c : −1

a ≻∗ c ≻∗ b

Example A.4: Example 2.
1: a ≻ c ≻ b
2: a ≻ c ≻ b
3: b ≻ c ≻ a
4: b ≻ a ≻ c
5: c ≻ a ≻ b

Scores. a : −1, b : −3, c : −1

a ∼∗ c ≻∗ b
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Part IV

Solutions
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A Chapter 1

Solution 1.1: No, No, Yes

It is not complete since there are people who are not siblings of eachother at all. It is not
transitive if we think of sibling as being something broader than “having the same biological
parents”. For instance, person a’s step-sibling b might have a step-sibling c who is not a step
sibling of a. Sibling is symmetric though since if a is a sibling of b then b is a sibling of a.

Solution 1.2: Yes, Yes, No

Solution 1.3: No,Yes,Yes

Solution 1.4: If a relation is symmetric then if xRy is true, so is yRx. If yRx is true then so
is xRy. Thus, if a relation is symmetric then either both of xRy and yRx are true or neither are
true. But by completeness, for all x and y, at least one must be true. Thus, combining these, we
have: for all x and y both xRy and yRx are true. Thus, every possible pair of things are related
in both directions. This is the universal relation.

Solution 1.5:

1. Transitive.

2. Transitive.

3. Not Transitive. Missing xRz)

Solution 1.6:

1. Neither.

2. Both.

3. Both.

4. Neither.

Solution 1.7:
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x

y

∼ (1, 1)

∼ (2, 2)

≻ (2, 2)

Solution 1.8:

x

y

∼ (1, 1)

∼ (2, 2)

≻ (2, 2)

Solution 1.9:

a

b c

d

Solution 1.10:

1. p ≻ q, p ≻ r, q ≻ r
2. There are no strict preferences.
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Solution 1.11: 1. p ∼ p, q ∼ q, r ∼ r
2. p ∼ p, q ∼ q, r ∼ r, p ∼ q, q ∼ r, p ∼ r

A Chapter 2

Solution 2.1: a ≿ a, b ≿ b, c ≿ c, b ≿ a, b ≿ c, c ≿ a

Solution 2.2: For example, U(A) = 9, U(B) = 16, U(C) = 12. But there are many possible
solutions.

Solution 2.3: (4, 5) ∼ (16, 3)

Solution 2.4: U(9, 4) = 7 and (9, 4) ∼ (0, 7).

Solution 2.5:

Solution 2.6: 10 20 30 40

1

2

3

4

5

6

7

(9, 4)

(0, 7)

(4, 5)

(49, 0)

t

m

Solution 2.7: Utility is merely a mathematical tool to represent preferences. Preferences are
really what we care about. As long as those preferences meet some basic conditions, we can use
utility to represent them. This allows us to use the numerical tools of mathematics to work with
preferences.
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Solution 2.8:

x

y

∼ (4, 4)

(0, 8)

(8, 0)

Solution 2.9:

x

y

∼ (4, 4)

(0, 12)

(6, 0)

Solution 2.10:

x

y

∼ (4, 4)
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A Chapter 3

Solution 3.1:

P = {a,b, c}
O = {yes,no}

yes ≻a no

no ≻b yes

yes ≻c no

Solution 3.2: Here, I will assume that if Camden cleans, then even if someone else helps,
they cannot make things any better. In this case, as long as Camden is involved, Alice and Bob
just want to avoid even trying to put in work. There are many ways to answer this question
though. The most important thin is that any outcome involving Camden should be lower than
n for everyone.

P = {a,b, c}
O = {abc,ab,ac,bc,a,b,c,n}

b ≻a ab ≻a a ≻a n ≻a c ∼a bc ≻a abc ∼a ac

a ≻b ab ≻b b ≻b n ≻b c ∼b ac ≻b abc ∼b bc

a ∼c b ∼c ab ≻c n ≻c c ∼c ac ∼c bc ∼c abc

Solution 3.3: Here, I will just assume that Camden’s utility is the same as Alice’s. Though,
you can really choose any utility for Camden as long as the utility of yes is higher than no.

P ={a,b,c}
O ={yes,no}

ua(o) =

{
10 o = yes

9 o = no

ub(o) =

{
1 o = yes

10 o = no

uc(o) =

{
10 o = yes

9 o = no
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Solution 3.4: My goal here is just to make the numbers represent my solution to 3.2.

P ={a, b, c}
O ={abc,ab,ac,bc,a,b,c,n}

ua(o) =



12 if o = ab

10 if o = a

25 if o = b

5 if o = n

3 if o = c

1 if o = ac

3 if o = bc

1 if o = abc

ub(o) =



12 if o = ab

25 if o = a

10 if o = b

5 if o = n

3 if o = c

3 if o = ac

1 if o = bc

1 if o = abc

ub(o) =



25 if o = ab

25 if o = a

25 if o = b

5 if o = n

1 if o = c

1 if o = ac

1 if o = bc

1 if o = abc

A Chapter 4

Solution 4.1:
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a

b

c

Solution 4.2:
a and b

Solution 4.3:
All outcomes: a, b, c, d

Solution 4.4:
All outcomes: a, b, c

Solution 4.5:

a

b c

d

Solution 4.6:
a Pareto dominates all others.
b Pareto dominates c and d
c Pareto dominates b and d

Solution 4.7:
Only a

Solution 4.8:
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5 10 15

5

10

15

Ua

Ub Pareto Inefficient
Pareto Efficient

Solution 4.9:
a Pareto dominates all others.
b Pareto dominates d
c Pareto dominates d
a Strictly Pareto dominates all others.
b Strictly Pareto dominates d
c Strictly Pareto dominates d

Solution 4.10:
b Pareto dominates d
c Pareto dominates d
b Strictly Pareto dominates d
c Strictly Pareto dominates d

Solution 4.11:
b, c

A Chapter 5

Solution 5.1:
You can really say whatever you want for this. I personally like b ≻∗ a ≻∗ c since b is the favorite
of 2 people and second favorite of 2 people. a is the favorite of 2 but the second favorite of only
1.

Solution 5.2:
a ≻∗ b, b ≻∗ c, c ≻∗ a. This is condorcet Paradox example. The preferences are intransitive.
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Solution 5.3:
a ∼∗ b ∼∗ c

Solution 5.4:
b ≻∗ a ≻∗ c

A Chapter 6

Solution 6.1:
Greg: Give me an example of a preference aggregation rule that is complete, transitive, Pareto
efficient, and obeys IIA.
ChatGPT: One classic example of a preference aggregation rule that satisfies completeness, tran-
sitivity, Pareto efficiency, and independence of irrelevant alternatives (IIA) is the Borda count.

Characteristics: Completeness: The Borda count allows for the ranking of all alternatives based
on individual preferences, ensuring that every pair of options can be compared.

Transitivity: If option A is preferred to B and B is preferred to C, then A will be preferred to C
when aggregating preferences, assuming individual preferences are transitive.

Pareto Efficiency: If every voter prefers option A over option B, then B cannot be chosen over
A without violating Pareto efficiency.

Independence of Irrelevant Alternatives (IIA): The ranking of A over B remains unchanged if
a third option, C, is introduced or removed, as the preference is solely based on the pairwise
comparison of A and B.

How it Works:
In the Borda count, each voter ranks all the alternatives. Points are assigned based on the rank
given (e.g., if there are 4 options, a first-place vote gets 3 points, second place gets 2 points, and
so on). The alternative with the highest total score wins. This method aggregates preferences
while adhering to the mentioned criteria.

Summary:
The Borda count effectively aggregates preferences while satisfying completeness, transitivity,
Pareto efficiency, and IIA, making it a robust choice for preference aggregation.

6.2

Pareto Efficiency Counter-Example:
a ≻ b ≻ c
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a ≻ b ≻ c

a ≻ b ≻ c

a ∼∗ b ≻∗ c

IIA Counter-Example:

a ≻ b ≻ c

b ≻ a ≻ c

c ≻ a ≻ b

a ∼∗ b ∼∗ c

Let’s change the preferences but keep the relationship between a and b for each person.

a ≻ b ≻ c

b ≻ a ≻ c

a ≻ b ≻ c

a ≻∗ b ≻∗ c

Solution 6.3:

Pareto Efficiency Counter-Example:

a ≻ b ≻ c

a ≻ b ≻ c

a ≻ b ≻ c

a ∼∗ b ≻∗ c

IIA Counter-Example:
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a ≻ b ≻ c

b ≻ a ≻ c

c ≻ a ≻ b

a ≻∗ b ≻∗ c

a ≻ b ≻ c

b ≻ c ≻ a

c ≻ a ≻ b

a ∼∗ b ∼∗ c

Solution 6.4:

The alphabetic rule orders the outcomes in terms of alphabetical order regardless of individual
preferences. It is complete, transitive, and respects IIA.

A Chapter 7

Solution 7.1:
a or b

Solution 7.2:
b

Solution 7.3:
b

A Chapter 8

Solution 8.1:
Imagine that we had to make a collective decision over some options- like where to go for lunch.
Every individual has their own opinion and preferences about where they want to go. It would
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be nice if we could come up with some formal way to take individual preferences and apply a
rule that will result in what we should choose.

What would we want that rule to do? Well, it should always pick something. It should never
pick something if everyone unanimously agree there is some other option that is better. And it
should never make weird choices– like it picks some option a out of a, b, c but picks option b out
of a, b.

Arrow’s impossibility theorem says that there is no rule that does this except to just have one
of the people always decide the outcome. That’s called a dictatorship. This result tells us any
time we want to use a formal procedure for making choices in a society, we have to be ok with
it having some flaw. There is no perfect system.

Solution 8.2:
Any Condorcet paradox example like:
a ≻ b ≻ c
b ≻ c ≻ a
c ≻ a ≻ b

Solution 8.3:
The same example will work:
a ≻ b ≻ c
b ≻ c ≻ a
c ≻ a ≻ b

Solution 8.4: IIA Counter-Example:

a ≻ b ≻ c

b ≻ a ≻ c

a ≻ b ≻ c

a is the social choice.

a ≻ b ≻ c

b ≻ a ≻ c

c ≻ a ≻ b

a, b or c are the social choices.
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Note that nothing about preferences over a and b have changed from the first to second set of
preferences. In the first a was chosen and b was not. Yet, in the second, b is also chosen. This
violates IIA.

Solution 8.5: IIA Counter-Example:

a ≻ b ≻ c

b ≻ a ≻ c

a ≻ b ≻ c

a is the social choice.

a ≻ b ≻ c

b ≻ c ≻ a

a ≻ b ≻ c

a or b are the social choices.

Note that nothing about preferences over a and b have changed from the first to second set of
preferences. In the first a was chosen and b was not. Yet, in the second, b is also chosen. This
violates IIA.

Solution 8.6:

a ≻ b ≻ c

a ≻ b ≻ c

a ≻ b ≻ c

The social choice is a or b and yet a is strictly prefered by everyone to b. b cannot be chosen by
a Pareto efficient social choice function.
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A Chapter 9

Solution 9.1: In the US voting system, there are many third party candidates. However, given
how the system works, there is very little incentive for people who support those candidates to
vote for them. They are very unlikely to win an election. Because of that, people who support
those candidates will usually vote for one of the two major party candidates instead. They act
as-if one of those candidates are their favorite. This is an instance of “strategic” voting. The
result is that there is less apparent support for third-parties than there might be in a system
where such strategic voting was not common.

Could we come up with a system that eliminates strategic voting an implement a system where
voters would have incentive to reveal their true preferences over candidates or other options?
The Gibbard-Satterthawite theorem says no unless you are willing to accept a system that is
either a dictatorship (one person decided the outcome) or in which there is a possibility of an
outcome being chosen that is unanimously worse than some other option.

Solution 9.2:
Suppose true preferences are:
a ≻ b ≻ c
a ≻ b ≻ c
c ≻ b ≻ a
c ≻ b ≻ a
c ≻ b ≻ a

a is the social choice. However, if person 5 instead says their preferences are b ≻ c ≻ a then b
wins and they like this better.

Solution 9.3:
Warning. This one is a little tougher to come up with a counter-example for than others we have
looked at.

Here is one possibility. Suppose true preferences are:

c ≻ a ≻ b
a ≻ b ≻ c
b ≻ c ≻ a

Since all three outcomes get a score of 6 the tie is broken and a is the social choice. However, if
person 3 says their preferences are c ≻ b ≻ a then c is the social choice since the scores are now
a : 6, b : 5, c : 7. Since person 3 prefers c to a they have incentive to manipulate their preferences
this way.
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