0.1 Exercises about Majority Rule and Copeland's Method.

- $1: a \succ b \succ c$ $2: a \succ b \succ c$ $3: b \succ c \succ a$
- $4: b \succ c \succ a$

 $5: c \succ a \succ b$

Majority Rule.

We compare every pair of outcomes. And if at least 50% of people prefer x to y then $x \succeq^* y$.

Compare a and b: 3 votes for a and 2 votes for b. a wins $a \succ^* b$.

Compare a and c: c wins (with 3 of 5 votes) $c \succ^* a$

Compare b and c: b wins (with 4 of 5 votes) $b \succ^* c$.

We have a cycle in the preferences. $a \succ b, b \succ c, c \succ a$ and thus, the social preferences are intransitive.

Copeland's Method

Compare a and b: 3 votes for a and 2 votes for b. a wins and get 1 point.

Compare a and c: c wins (with 3 of 5 votes) and gets 1 point.

Compare b and c: b wins (with 4 of 5 votes) and gets 1 point.

a:1, b:1, c:1.

 $a \sim^* b \sim^* c$

1 Properties of Preference Aggregation Rules

1.1 Basic Properties

What should a preference aggregation rule achieve?

1. *Complete*. The preference aggregation rule is **complete**, if the social preferences are always complete for any set of individual preferences.

2. Transitive. The preference aggregation rule is **transitive**, if the social preferences are always transitive for any set of individual preferences.

3. Pareto Efficient. If everyone strictly prefers x to y then so does the social preference. If for everyone $x \succ_i y$ then $x \succ^* y$.

1.2 What we know so far.

Rule	Complete	Transitive	Pareto	
Dictatorship	\checkmark	\checkmark	\checkmark	
Unanimity Rule	×	\checkmark	\checkmark	
Majority Rule	\checkmark	×	\checkmark	

Is Majority rule pareto efficient?

The definition. If everyone strictly prefers x to y then so does the social preference.

For majority rule if > 50% of people prefer x to y then $x \succ^* y$.

If everyone prefers x to y then 100% of people will vote for x and so $x \succ^* y$.

1.3 Methods that use a Score

Any method that assigns a score to the outcomes and then ranks the outcomes by score will always be complete and transitive.

1.4 Copeland's Method

Complete- yes, because it assigns scores.

Transitive- yes, because it assigns scores.

Pareto Efficient-

Suppose everyone prefers x to y. Does Copeland's method $x \succ^* y$? That is does x get a strictly higher score than y?

Anyone who likes y better than z better also like x better than z.

```
y \succ_i z
```

Since everyone prefers x to y we have. Anyone who prefers y to z also prefers x to z since **everyone** prefers x to y.

 $x \succ_i y \succ_i z$

If a majority of people prefer y to z then a majority of people will also prefer x to z.

Any pairwise competition that y wins, x will also win. Plus x beats y. Thus, the score of x is **at least** one more than the score of y. Thus $x \succ^* y$.

Rule	Complete	Transitive	Pareto
Dictatorship	\checkmark	\checkmark	\checkmark
Unanimity Rule	×	\checkmark	\checkmark
Majority Rule	\checkmark	×	\checkmark
Copelands	\checkmark	\checkmark	\checkmark

1.5 Example of Pareto Efficiency in Copeland's Rule

 $1: a \succ b \succ c$ $2: a \succ b \succ c$ $3: b \succ c \succ a$ $4: b \succ c \succ a$ $5: b \succ a \succ c$ b beats a- b gets a point a beats c- a gets a pointb beats c- b gets a point

1.6 Borda Method

Complete- yes, because it assigns scores.

Transitive- yes, because it assigns scores.

Pareto Efficient-

If everyone strictly prefers x to y. Then x gets a strictly higher score for each person than y does. So of course the sum of the scores for x has to be strictly higher than y and so $x \succ^* y$.

Rule	Complete	Transitive	Pareto
Dictatorship	\checkmark	\checkmark	\checkmark
Unanimity Rule	×	\checkmark	\checkmark
Majority Rule	\checkmark	×	\checkmark
Copelands	\checkmark	\checkmark	\checkmark
Borda Count	\checkmark	\checkmark	\checkmark

1.7 Independence of Irrelevant Alternatives

 $1: a \succ b \succ c$ $2: b \succ c \succ a$ $3: c \succ a \succ b$

Borda:

a: 3+2+1 b: 2+3+1 c: 1+2+3 $a \sim^* b \sim^* c$ Let's focus on $a \sim^* b$ Swap a and c for Person 2. $1: a \succ b \succ c$ $2: b \succ a \succ c$ $3: c \succ a \succ b$ a: 3+2+2=7 b: 2+3+1=6 c: 1+1+3=4 $a \succ^* b \succ^* c$

Even though everyone who likes $a \succ b$ in example 1 still does and everyone who likes $b \succ a$ in example 1 still does, the social preference over a and b changed from $a \sim^* b$ to $a \succ^* b$.

1.8 IIA

A preference aggregation rule obeys **Independence of Irrelevant Alternatives** [IIA] if for any two sets of preferences where the preference for a and b is the same between the two sets, they should have the same social preference between a and b.

1.9 Why Does this Matter?

1.9.1 Borda Example

25 People: $a \succ b \succ c$

40 People: $b \succ c \succ a$

35 People: $c \succ a \succ b$

Borda:

a:(25)3+(40)1+(35)2=185

b: (25) 2 + (40) 3 + (35) 1 = 205

c: (25) 1 + (40) 2 + (35) 3 = 210 $c \succ^* b \succ^* a.$ 25 People: $b \succ c$ 40 People: $b \succ c$ 35 People: $c \succ b$

$$\begin{split} b &: (25) \, 2 + (40) \, 2 + (35) \, 1 = 165 \\ c &: (25) \, 1 + (40) \, 1 + (35) \, 2 = 135 \\ b \succ^* c \end{split}$$

1.10 Arrow's

Rule	Complete	Transitive	Pareto	IIA
Dictatorship	\checkmark	\checkmark	\checkmark	\checkmark
Unanimity Rule	×	\checkmark	\checkmark	\checkmark
Majority Rule	\checkmark	×	\checkmark	\checkmark
Copelands	\checkmark	\checkmark	\checkmark	×
Borda Count	\checkmark	\checkmark	\checkmark	×

Statement: If there are at least three options available, the **only** preference aggregation rule that is complete, transitive, Pareto efficient, and respects IIA is a **dictatorship**.