1 More Complex Optimization Examples

1.1 Formally Dealing with Non-Negativity Constraints

1.2 Quasi-Linear

Maximize $u=\log \left(x_{1}\right)+x_{2}$ subject to $x_{1}+x_{2} \leq m$ and $x_{1}, x_{2} \geq 0$

$$
\begin{gathered}
\log \left(x_{1}\right)+x_{2}-\lambda\left(x_{1}+x_{2}-m\right)+\mu_{1}\left(x_{1}\right)+\mu_{2}\left(x_{2}\right) \\
\frac{\partial\left(\log \left(x_{1}\right)+x_{2}-\lambda\left(x_{1}+x_{2}-m\right)+\mu_{1}\left(x_{1}\right)+\mu_{2}\left(x_{2}\right)\right)}{\partial x_{1}}=-\lambda+\mu_{1}+\frac{1}{x_{1}} \\
\frac{\partial\left(\log \left(x_{1}\right)+x_{2}-\lambda\left(x_{1}+x_{2}-m\right)+\mu_{1}\left(x_{1}\right)+\mu_{2}\left(x_{2}\right)\right)}{\partial x_{2}}=-\lambda+\mu_{2}+1
\end{gathered}
$$

FOCs

$$
\begin{aligned}
& -\lambda+\mu_{1}+\frac{1}{x_{1}}=0 \\
& -\lambda+\mu_{2}+1=0
\end{aligned}
$$

Three possible boundaries to be on. $x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq m$.
We know $x_{1}+x_{2}=m$ at the optimum because the utility function is monotonic.
On the boundary of all three. $x_{1}=0, x_{2}=0, x_{1}+x_{2}=m$
This is impossible because there is no x_{1}, x_{2} meeting these conditions.
On the boundary of $x_{1} \geq 0$ and the budget constraint. $x_{1}=0, x_{1}+x_{2}=m$ This is a fesible scenario. $x_{2}=m$. Set $\mu_{2}=0$ because we are on the interior of the $x_{2} \geq 0$

$$
\begin{gathered}
-\lambda+\mu_{1}+\frac{1}{x_{1}}=0 \\
-\lambda+0+1=0
\end{gathered}
$$

Let's simplify:

$$
\mu_{1}+\frac{1}{0}=1
$$

$$
1=\lambda
$$

This is impossible. We cannot meet the first order conditions in this scenario.
Suppose $x_{2}=0$ and $x_{1}+x_{2}=m$ but $x_{1} \geq 0$. Is there are bundle that meets this condition?

$$
\begin{aligned}
& x_{1}=m, x_{2}=0 \\
& -\lambda+\frac{1}{x_{1}}=0 \\
& -\lambda+\mu_{2}+1=0
\end{aligned}
$$

Plug in values:

$$
\begin{gathered}
\frac{1}{m}=\lambda \\
\mu_{2}=\frac{1}{m}-1
\end{gathered}
$$

This is positive for $m \leq 1$. When $m \leq 1$ the optimal solution is $(m, 0)$.
Let's check the condition where both $x_{1}>0$ and $x_{2}>0$.

$$
\begin{aligned}
& -\lambda+\frac{1}{x_{1}}=0 \\
& -\lambda+1=0 \\
& x_{1}+x_{2}=m
\end{aligned}
$$

Solve these:

$$
\begin{gathered}
\lambda=1 \\
x_{1}=1 \\
x_{2}=m-1 \\
(1, m-1)
\end{gathered}
$$

Only feasible when $m \geq 1$

1.3 The marginal utility per dollar of all goods is the same for goods I buy some of at the optimum.

$$
u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)+\mu_{1}\left(x_{1}\right)+\mu_{2}\left(x_{2}\right)
$$

Suppose none of the non-negativity constraints bind. Then the first order conditions are:

$$
\begin{aligned}
& \frac{M U_{1}}{p_{1}}=\lambda \\
& \frac{M U_{2}}{p_{2}}=\lambda
\end{aligned}
$$

Thus,

$$
\frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}
$$

For a problem with more variables, this will also hold for and i, j.

$$
\frac{M U_{i}}{p_{i}}=\frac{M U_{j}}{p_{j}}
$$

