1 Decisions Under Uncertainty

Outcomes: $A=\left\{a_{1}, \ldots, a_{n}\right\}$. The set of objects or bundles. A simple gamble is a probability distribution over outcomes.
$A=\{$ apple, banana, carrot $\}$

$$
\begin{array}{r}
\left(\frac{1}{2} \circ \text { apple, }, \frac{1}{2} \circ \text { banana }\right) \\
\left(\frac{1}{3} \circ \text { apple }, \frac{1}{3} \circ \text { banana, } \frac{1}{3} \circ \text { carrot }\right)
\end{array}
$$

Degenerate gamble:
(apple)

We might say. If apple \succ banana then it is reasonable to think this would be true:

$$
(1 \circ \text { apple }, 0 \circ \text { banana }) \succ\left(\frac{1}{2} \circ \text { apple }, \frac{1}{2} \circ \text { banana }\right)
$$

Without further assumptions, we could have:

$$
\left(\frac{1}{2} \circ \text { apple }, \frac{1}{2} \circ \text { banana }\right) \succ(1 \circ \text { apple }, 0 \circ \text { banana })
$$

Set of Simple Gambles: $\mathcal{G}_{s}=\left\{\left(p_{1} \circ a_{1}, p_{2} \circ a_{2}, \ldots, p_{n} \circ a_{n}\right) \mid \sum p_{i}=1, p_{i} \geq 0,\left(\forall i \in\{1, \ldots, n\}, a_{i} \in A\right)\right\}$.
A first order compound gamble is a probability distribution over simple gambles.

$$
\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ \text { apple, } \frac{1}{2} \circ \text { banana }\right), \frac{1}{2} \circ\left(\frac{1}{3} \circ \text { apple, } \frac{1}{3} \circ \text { banana }, \frac{1}{3} \circ \text { carrot }\right)\right)
$$

Set of First-Order Compound Gambles:
$\mathcal{G}_{c_{1}}=\left\{\left(p_{1} \circ g_{1}, p_{2} \circ g_{2}, \ldots, p_{k} \circ g_{k}\right) \mid \sum p_{i}=1, p_{i} \geq 0,\left(\forall i \in\{1, \ldots, k\}, g_{i} \in \mathcal{G}_{s}\right)\right\}$

Set of Second-Order Compound Gambles:

$\mathcal{G}_{c_{2}}=\left\{\left(p_{1} \circ g_{1}, p_{2} \circ g_{2}, \ldots, p_{k} \circ g_{k}\right) \mid \sum p_{i}=1, p_{i} \geq 0,\left(\forall i \in\{1, \ldots, k\}, g_{i} \in\left\{\mathcal{G}_{c_{1}}, \mathcal{G}_{s}\right\}\right)\right\}$

Set of All Compound Gambles:

$\mathcal{G} \equiv\left\{\left(p_{1} \circ g_{1}, p_{2} \circ g_{2}, \ldots, p_{k} \circ g_{k}\right) \mid \sum p_{i}=1, p_{i} \geq 0,\left(\forall i \in\{1, \ldots, k\}, g_{i} \in \mathcal{G}_{c_{j}}\right.\right.$ for some $j \in \mathbb{N}$ or $\left.\left.g_{i} \in \mathcal{G}_{s}\right)\right\}$

A compound gamble is a probability distribution over compound gambles, where each of those compound gambles is of some finite order.
This is a second order compound gamble.

$$
g=\left(\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ \$ 10, \frac{1}{2} \circ \$ 0\right), \frac{1}{2} \circ \$ 5\right)\right),\left(\frac{1}{2} \circ \$ 7\right)\right)
$$

Third order compound gamble.

$$
\begin{gathered}
g^{\prime}=\frac{1}{3} \circ g, \frac{2}{3} \circ \$ 10 \\
g=\left(\frac{1}{3} \circ\left(\left(\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ \$ 10, \frac{1}{2} \circ \$ 0\right), \frac{1}{2} \circ \$ 5\right)\right),\left(\frac{1}{2} \circ \$ 7\right)\right)\right), \frac{2}{3} \circ \$ 10\right)
\end{gathered}
$$

1.1 Induced Simple Gambles and Reduction

Induced simple gamble. $A=\{\$ 0, \$ 5, \$ 7, \$ 10\}$

$$
g=\frac{1}{2} \circ\left(\frac{1}{2} \circ \$ 10, \frac{1}{2} \circ \$ 0\right), \frac{1}{2} \circ \$ 5
$$

The compound gamble g induces this simple gamble:

$$
g_{s}(g)=\left(\frac{1}{4} \circ \$ 10, \frac{1}{4} \circ \$ 0, \frac{1}{2} \circ \$ 5\right)
$$

Reduction. $\forall g \in \mathcal{G}, g \sim g_{s}(g)$. (Reduction of compound gambles) For the gambles above, if the consumer meets this assumption, then:

$$
\left(\frac{1}{2} \circ\left(\frac{1}{2} \circ \$ 10, \frac{1}{2} \circ \$ 0\right), \frac{1}{2} \circ \$ 5\right) \sim\left(\frac{1}{4} \circ \$ 10, \frac{1}{4} \circ \$ 0, \frac{1}{2} \circ \$ 5\right)
$$

