1 Consumer Problem Continued

1.1 Utility Max

$x_{1} x_{2}, p_{1} x_{1}+p_{2} x_{2} \leq m$
Marshallian Demands.

$$
\begin{aligned}
\left(x_{1}^{*}, x_{2}^{*}\right) & =\left(\frac{\frac{1}{2} m}{p_{1}}, \frac{\frac{1}{2} m}{p_{2}}\right) \\
\lambda & =\frac{m}{2 p_{1} p_{2}}
\end{aligned}
$$

What is the maximum utility given the prices and income? Indirect Utility.

$$
\begin{gathered}
u\left(x_{1}^{*}, x_{2}^{*}\right) \\
V\left(p_{1}, p_{2}, m\right)=\frac{\frac{1}{2} m}{p_{1}} \frac{\frac{1}{2} m}{p_{2}}=\frac{\frac{1}{4} m^{2}}{p_{1} p_{2}} \\
\frac{\frac{1}{4} m^{2}}{p_{1} p_{2}} \\
\frac{\partial\left(\frac{\frac{1}{4} m^{2}}{p_{1} p_{2}}\right)}{\partial p_{1}}=-\frac{m^{2}}{4 p_{1}^{2} p_{2}} \\
\frac{\frac{1}{4}(2 m)^{2}}{\left(2 p_{1}\right)\left(2 p_{2}\right)}=\frac{\frac{1}{4} m^{2}}{p_{1} p_{2}} \\
\frac{\frac{1}{4} m^{2}}{p_{1} p_{2}}
\end{gathered}
$$

A function that is homogenous of degree α has the following property:

$$
f(t x)=t^{\alpha} f(x)
$$

$$
\begin{gathered}
f(t x)=(t x)^{2}=t^{2} x^{2}=t^{2} f(x) \\
2 x_{1} 2 x_{2}=4 x_{1} x_{2}
\end{gathered}
$$

Continuous- Due to Berge's Theorem of the Maximum
Homogenous of degree zero in prices and income.
Increasing in m and decreasing in p_{1}, p_{2}, \ldots
Quasi-convex in p, m - If I take a budget that is a convex combination of two other budgets, the utility I can achieve cannot be better the best of the two budgets.

$$
\left(p_{1}, p_{2}, m\right):(4,2,20),(2,4,20)
$$

Envelope Condition:

$$
\left(x_{1} x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)
$$

$\frac{\partial v}{\partial p}$

$$
\begin{gathered}
\frac{\partial\left(\left(x_{1} x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)\right)}{\partial p_{1}} \\
-\lambda x_{1}
\end{gathered}
$$

λ

$$
\begin{gathered}
\frac{\partial V\left(p_{1}, p_{2}, m\right)}{\partial p_{1}}=-\lambda x_{1} \\
\frac{\partial V\left(p_{1}, p_{2}, m\right)}{\partial m}=\lambda \\
-\frac{\frac{\partial V}{\partial p_{i}}}{\frac{\partial V}{\partial m}}=-\frac{-\lambda x_{1}}{\lambda}=x_{1}
\end{gathered}
$$

1.2 Properties of Indirect Utility

For U that is continuous and strictly increasing, the Indirect Utility Function v has the Following Properties:

1. Continuous.
2. Homogeneous of degree zero in prices and income.
3. Strictly increasing in m and weakly decreasing in p.
4. Quasi-convex in (p, m).
5. Roy's Identity. $-\frac{\frac{\partial V}{\partial p_{i}}}{\frac{\partial p}{\partial m}}=x_{i}^{*}$ (An envelope condition.)

1.3 Cost Min Example

Minimize the cost of utility u with $x_{1} x_{2}$
$\operatorname{Min} p_{1} x_{1}+p_{2} x_{2}$ subject to $x_{1} x_{2} \geq u$

$$
\begin{gathered}
\mathscr{L}=\left(p_{1} x_{1}+p_{2} x_{2}\right)+\mu\left(u-x_{1} x_{2}\right) \\
\frac{\partial\left(\left(p_{1} x_{1}+p_{2} x_{2}\right)+\mu\left(u-x_{1} x_{2}\right)\right)}{\partial \mu}=u-x_{1} x_{2} \\
\frac{\partial\left(\left(p_{1} x_{1}+p_{2} x_{2}\right)+\mu\left(u-x_{1} x_{2}\right)\right)}{\partial x_{1}}=p_{1}-\mu x_{2} \\
\frac{\partial\left(\left(p_{1} x_{1}+p_{2} x_{2}\right)+\mu\left(u-x_{1} x_{2}\right)\right)}{\partial x_{2}}=p_{2}-\mu x_{1} \\
u=x_{1} x_{2} \\
x_{1}=\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}, x_{2}=\frac{\sqrt{p_{1}} \sqrt{u}}{\sqrt{p_{2}}}, \mu=\frac{\sqrt{p_{1}} \sqrt{p_{2}}}{\sqrt{u}}
\end{gathered}
$$

Hicksian demands. What are the x_{1}, x_{2} we need to minimize the cost of achieving utility u.

$$
x_{1}^{h}=\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}
$$

$$
x_{2}^{h}=\frac{\sqrt{p_{1}} \sqrt{u}}{\sqrt{p_{2}}}
$$

Pick an income m. Solve for $V\left(p_{1}, p_{2}, m\right)$. Then $x_{1}^{h}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=$ $x_{1}\left(p_{1}, p_{2}, m\right)$
Duality:

$$
\begin{gathered}
x_{1}^{h}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=x_{1}\left(p_{1}, p_{2}, m\right) \\
x_{1}=\frac{\frac{1}{2} m}{p_{1}}, V\left(p_{1}, p_{2}, m\right)=\frac{\frac{1}{2} m}{p_{1}} \frac{\frac{1}{2} m}{p_{2}}, x_{1}^{h}=\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}} \\
\frac{\sqrt{p_{2}} \sqrt{\frac{1}{2} m} \frac{\frac{1}{2} m}{p_{2}}}{\sqrt{p_{1}}}=\frac{\frac{1}{2} m}{p_{1}} \\
\frac{\sqrt{p_{2}} \frac{1}{2} m \sqrt{\frac{1}{p_{1}} \frac{1}{p_{2}}}}{\sqrt{p_{1}}}=\frac{\frac{1}{2} m}{p_{1}} \\
\frac{\sqrt{p_{2}} \frac{1}{2} m}{\sqrt{p_{1}} \sqrt{p_{1}} \sqrt{p_{2}}}=\frac{\frac{1}{2} m}{p_{1}} \\
\frac{\frac{1}{2} m}{p_{1}}=\frac{\frac{1}{2} m}{p_{1}}
\end{gathered}
$$

Another form of duality:

$$
\begin{gathered}
x_{1}^{h}\left(p_{1}, p_{2}, u\right)=x_{1}\left(p_{1}, p_{2}, E\left(p_{1}, p_{2}, u\right)\right) \\
\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}=\frac{\frac{1}{2} E\left(p_{1}, p_{2}, u\right)}{p_{2}}
\end{gathered}
$$

Here we need the "Expenditure function" this is the value of $p_{1} x_{1}+p_{2} x_{2}$ evaluated at the hicksian demands.

$$
\begin{aligned}
E\left(p_{1}, p_{2}, u\right) & =p_{1} \frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}+p_{2} \frac{\sqrt{p_{1}} \sqrt{u}}{\sqrt{p_{2}}} \\
& =2 \sqrt{p_{1}} \sqrt{p_{2}} \sqrt{u}
\end{aligned}
$$

1.4 Properties of Expenditure Function

For U that is continuous and strictly increasing, the Expenditure Function e has the following properties:

1. Continuous.
2. For $p \gg 0$, strictly increasing and unbounded above in u.
3. Increasing in p.
4. Homogeneous of degree 1 in p.
5. Concave in p.
6. Shephard's lemma. When x_{i}^{h} is single valued, $-\frac{\partial e}{\partial p_{i}}=x_{i}^{h}$

1.5 Slutsky Equation

$$
\begin{gathered}
x_{i}(p, e(p, u))=x_{i}^{h}(p, u) \\
\frac{\partial\left(x_{i}(p, e(p, u))\right)}{\partial p_{j}}=\frac{\partial x_{i}^{h}(p, u)}{\partial p_{j}} \\
\frac{\partial\left(x_{i}(p, e(p, u))\right)}{\partial p_{j}}=\frac{\partial x_{i}^{h}(p, u)}{\partial p_{j}} \\
\frac{\partial\left(x_{i}(p, y)\right)}{\partial p_{j}}+\frac{\partial\left(x_{i}(p, y)\right)}{\partial y} \frac{\partial e}{\partial p_{j}}=\frac{\partial x_{i}^{h}(p, u)}{\partial p_{j}} \\
\frac{\partial\left(x_{i}(p, y)\right)}{\partial p_{j}}=\frac{\partial x_{i}^{h}(p, u)}{\partial p_{j}}-\frac{\partial\left(x_{i}(p, y)\right)}{\partial y} x_{j}^{h}
\end{gathered}
$$

1.5.1 Slutsky Equation: $\frac{\partial\left(x_{i}(p, y)\right)}{\partial p_{j}}=\frac{\partial\left(x_{i}^{h}(p, \bar{u})\right)}{\partial p_{j}}-\frac{\partial\left(x_{i}(p, y)\right)}{\partial y} x_{j}^{h}$.

1.5.2 Negative Own-Substitution Effects

1.5.3 Elasticity

Income Elasticity $\eta_{i}=\frac{\frac{\partial x_{i}}{x_{i}}}{\frac{\partial y}{y}}=\frac{\partial x_{i}}{\partial y} \frac{y}{x_{i}}$
Price and Cross-Price Elasticity $\epsilon_{i j}=\frac{\frac{\partial x_{i}}{x_{i}}}{\frac{\partial p_{j}}{p_{j}}}=\frac{\partial x_{i}}{\partial p_{j}} \frac{p_{j}}{x_{i}}$.

1.5.4 Elasticity Relations

The share-weighted elasticities with respect to good i is the negative of $i^{\prime} s$ share: $-s_{i}=\sum_{j=1}^{n} s_{j} \varepsilon_{j, i}$
The share-weighted income elasticities sum to $1: 1=\sum_{j \in I} s_{j} \eta_{j}$

2 More Complex Optimization Examples

2.1 Some Examples with Multiple Constraints

Maximize $x_{1} x_{2}$ subject to (1) $\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}} \leq 10$ and (2) $2 x_{1}+x_{2} \leq 40$.
Maximize $x_{1} x_{2}$ subject to (1) $\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}} \leq 10$, (2) $2 x_{1}+x_{2} \leq 15$.

