1 Consumer Problem Continued

1.1 Utility Max
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What is the maximum utility given the prices and income? Indirect Utility.
u (21, 25)

1 1
§m §m . m

|4 (p17p25 m) = -
b1 p2 D1p2

1
Zm
pip2
1m;2
9 (1;11]92) L m2
Op1 4pips
1 (2m)? 1m?
1 _ 1

(2p1) (2p2)  pip2

1,2
4m

pip2

A function that is homogenous of degree a has the following property

ft) =t f (z)



f (te) = (tr)* = t*2® = £ ()

21‘12%‘2 = 4.1311‘2

Continuous- Due to Berge’s Theorem of the Maximum
Homogenous of degree zero in prices and income.
Increasing in m and decreasing in p1, ps, ...

Quasi-convex in p, m- If I take a budget that is a convex combination of
two other budgets, the utility I can achieve cannot be better the best
of the two budgets.

(p1,p2,m) : (4,2,20),(2,4,20)
(3,3,20)
Envelope Condition:
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1.2 Properties of Indirect Utility

For U that is continuous and strictly increasing, the Indirect Utility Function v
has the Following Properties:

1. Continuous.
2. Homogeneous of degree zero in prices and income.
3. Strictly increasing in m and weakly decreasing in p.

4. Quasi-convex in (p, m).
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5. Roy’s Identity. —3% = 27 (An envelope condition.)
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1.3 Cost Min Example

Minimize the cost of utility u with z;x4

Min p1x1 + paxo subject to x1xs > u

L = (prx1 + paza) + p(u — z122)
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Hicksian demands. What are the z1, x5 we need to minimize the cost of achiev-
ing utility w.
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Then z¥ (p1,p2, V (p1,p2, m))

Pick an income m. Solve for V (p1,p2, m)

r1 (p1,p2, m)
Duality:
o (p1,p2, V (p1,p2,m)) = 21 (P1,p2, M)
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Another form of duality:
zt (p1,p2,u) = 1 (p1,p2, E (p1,p2, 1))
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Here we need the “Expenditure function” this is the value of pyx1 + paxo evalu-

ated at the hicksian demands.
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1.4 Properties of Expenditure Function

For U that is continuous and strictly increasing, the Expenditure Function e
has the following properties:

1. Continuous.

2. For p > 0, strictly increasing and unbounded above in u.
3. Increasing in p.

4. Homogeneous of degree 1 in p.

5. Concave in p.

6. Shephard’s lemma. When x! is single valued, —g—; =zh

1.5 Slutsky Equation
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1.5.2 Negative Own-Substitution Effects

1.5.3 Elasticity
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1.5.4 Elasticity Relations

The share-weighted elasticities with respect to good i is the negative
of i's share: —s; = > 7, sje;,
The share-weighted income elasticities sum to 1: 1 =73, ;s;n;

2 More Complex Optimization Examples

2.1 Some Examples with Multiple Constraints
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Maximize x1x2 subject to (1) (.1‘% + x%) <10 and (2) 2z + x2 < 40.

N

Maximize z172 subject to (1) (mf + :c%) <10, (2) 2x1 + x5 < 15.



