
1 Consumer Problem Continued

1.1 Utility Max
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A function that is homogenous of degree α has the following property:

f (tx) = tαf (x)
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f (tx) = (tx)
2
= t2x2 = t2f (x)

2x12x2 = 4x1x2

Continuous- Due to Berge’s Theorem of the Maximum
Homogenous of degree zero in prices and income.
Increasing in m and decreasing in p1, p2, ...

Quasi-convex in p,m- If I take a budget that is a convex combination of
two other budgets, the utility I can achieve cannot be better the best
of the two budgets.

(p1, p2,m) : (4, 2, 20) , (2, 4, 20)

(3, 3, 20)
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1.2 Properties of Indirect Utility

For U that is continuous and strictly increasing, the Indirect Utility Function v
has the Following Properties:
1. Continuous.
2. Homogeneous of degree zero in prices and income.
3. Strictly increasing in m and weakly decreasing in p.
4. Quasi-convex in (p,m).

5. Roy’s Identity. −
∂V
∂pi
∂V
∂m

= x∗
i (An envelope condition.)

1.3 Cost Min Example

Minimize the cost of utility u with x1x2

Min p1x1 + p2x2 subject to x1x2 ≥ u

L = (p1x1 + p2x2) + µ (u− x1x2)
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Hicksian demands. What are the x1, x2 we need to minimize the cost of achiev-
ing utility u.
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Pick an income m. Solve for V (p1, p2,m). Then xh
1 (p1, p2, V (p1, p2,m)) =

x1 (p1, p2,m)

Duality:
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Another form of duality:

xh
1 (p1, p2, u) = x1 (p1, p2, E (p1, p2, u))
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Here we need the “Expenditure function” this is the value of p1x1 + p2x2 evalu-
ated at the hicksian demands.
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1.4 Properties of Expenditure Function

For U that is continuous and strictly increasing, the Expenditure Function e
has the following properties:
1. Continuous.
2. For p ≫ 0, strictly increasing and unbounded above in u.
3. Increasing in p.
4. Homogeneous of degree 1 in p.
5. Concave in p.
6. Shephard’s lemma. When xh

i is single valued, − ∂e
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1.5 Slutsky Equation
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1.5.1 Slutsky Equation: ∂(xi(p,y))
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1.5.2 Negative Own-Substitution Effects

1.5.3 Elasticity

Income Elasticity ηi =
∂xi
xi
∂y
y

= ∂xi
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y
xi

Price and Cross-Price Elasticity ϵij =
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∂pj
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xi
.
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1.5.4 Elasticity Relations

The share-weighted elasticities with respect to good i is the negative
of i′s share: −si =

∑n
j=1 sjεj,i

The share-weighted income elasticities sum to 1: 1 =
∑

j∈I sjηj

2 More Complex Optimization Examples

2.1 Some Examples with Multiple Constraints

Maximize x1x2 subject to (1)
(
x2
1 + x2

2

) 1
2 ≤ 10 and (2) 2x1 + x2 ≤ 40.

Maximize x1x2 subject to (1)
(
x2
1 + x2

2

) 1
2 ≤ 10, (2) 2x1 + x2 ≤ 15.
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