
0.1 Properties of Expenditure Function
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Measuring the value of the constraint (utility) in terms of the objective (money).
If relax my utility constraint by one unit, how much money can I save?
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Marginal utility per dollar spent on x1 at the optimum is:
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Suppose marginal utility per dollar spend on x1 is 2. Then how much does it
cost to increase u by one point using x1? It is 1
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The cost of utility in terms of x1.
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Both of these values are the multipler µ and this measures the cost of utility in
dollars.
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5. Concave in p.
6. Shephard’s lemma. ∂e
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Utility x1 + x2 and prices are p1 = 1 and p2 = 1

Minimize the cost of achieving utility u.

x1 + x2 = u
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0.2 Properties of Demand

0.2.1 Slutsky Equation
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By Shephard’s Lemma:
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Substitution effect: ∂xh
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0.2.2 Negative Own-Substitution Effects

Apply the slutsky equation to own price changes:
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Total effect = substitution effect + income effect
For normal goods, the income effect is negative
For inferior goods, the income effect is positive
Substitution effect:
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Since the expenditure function is concave in prices, ∂e
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≤ 0

0.2.3 Elasticity
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