0.1 Properties of Expenditure Function

$x_{1} x_{2}$

$$
x_{1}=\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}, x_{2}=\frac{\sqrt{p_{1}} \sqrt{u}}{\sqrt{p_{2}}}, \mu=\frac{\sqrt{p_{1}} \sqrt{p_{2}}}{\sqrt{u}}
$$

Measuring the value of the constraint (utility) in terms of the objective (money). If relax my utility constraint by one unit, how much money can I save?

$$
\begin{gathered}
x_{1} x_{2} \\
m u_{1}=x_{2}
\end{gathered}
$$

Marginal utility per dollar spent on x_{1} at the optimum is:

$$
\frac{m u_{1}}{p_{1}}=\frac{\frac{\sqrt{p_{1}} \sqrt{u}}{\sqrt{p_{2}}}}{p_{1}}
$$

Suppose marginal utility per dollar spend on x_{1} is 2 . Then how much does it cost to increase u by one point using x_{1} ? It is $\frac{1}{2}$.

$$
\frac{p_{1}}{m u_{1}}=\frac{\sqrt{p_{1}} \sqrt{p_{2}}}{\sqrt{u}}
$$

The cost of utility in terms of x_{1}.

$$
\frac{p_{2}}{m u_{2}}=\frac{p_{2}}{\frac{\sqrt{p_{2}} \sqrt{u}}{\sqrt{p_{1}}}}=\frac{\sqrt{p_{1}} \sqrt{p_{2}}}{\sqrt{u}}
$$

Both of these values are the multipler μ and this measures the cost of utility in dollars.

$$
\begin{gathered}
p_{1} x_{1}+p_{2} x_{2}+\mu\left(u-u\left(x_{1}, x_{2}\right)\right) \\
p_{1}-\mu \frac{\partial\left(u\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}=0 \\
p_{1}-\mu m u_{1}=0 \\
\mu=\frac{p_{1}}{m u_{1}}
\end{gathered}
$$

$$
\begin{gathered}
\mu=\frac{p_{2}}{m u_{2}} \\
\mu=\frac{1}{\lambda} \\
\mu=\frac{1}{2}
\end{gathered}
$$

5. Concave in p.
6. Shephard's lemma. $\frac{\partial e}{\partial p_{i}}=x_{i}^{h}$

$$
\begin{gathered}
p_{1} x_{1}+p_{2} x_{2}+\mu\left(u-u\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial\left(p_{1} x_{1}+p_{2} x_{2}+\mu\left(u-u\left(x_{1}, x_{2}\right)\right)\right)}{\partial p_{1}}=x_{1}^{h} \\
\frac{\partial e}{\partial p_{1}}=x_{1}^{h}
\end{gathered}
$$

Utility $x_{1}+x_{2}$ and prices are $p_{1}=1$ and $p_{2}=1$
Minimize the cost of achieving utility u.

$$
\begin{gathered}
x_{1}+x_{2}=u \\
(u, 0),(0, u),\left(\frac{1}{2} u, \frac{1}{2} u\right) \\
e\left(p_{1}, p_{2}, u\right)=u \\
\frac{\partial e}{\partial p_{1}}=0
\end{gathered}
$$

0.2 Properties of Demand

0.2.1 Slutsky Equation

$$
x_{i}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, u\right)\right)=x_{i}^{h}\left(p_{1}, p_{2}, u\right)
$$

$$
\begin{gathered}
\frac{\partial x_{i}\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, u\right)\right)}{\partial p_{j}}=\frac{\partial\left(x_{i}^{h}\left(p_{1}, p_{2}, u\right)\right)}{\partial p_{j}} \\
\frac{\partial x_{i}}{\partial p_{j}}+\frac{\partial x_{i}}{\partial m} \frac{\partial e}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}
\end{gathered}
$$

By Shephard's Lemma:

$$
\begin{aligned}
& \frac{\partial x_{i}}{\partial p_{j}}+\frac{\partial x_{i}}{\partial m} x_{j}^{h}=\frac{\partial x_{i}^{h}}{\partial p_{j}} \\
& \frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}-\frac{\partial x_{i}}{\partial m} x_{j}
\end{aligned}
$$

Substitution effect: $\frac{\partial x_{i}^{h}}{\partial p_{j}}$
Income effect: $\frac{\partial x_{i}}{\partial m} x_{j}$

0.2.2 Negative Own-Substitution Effects

Apply the slutsky equation to own price changes:

$$
\frac{\partial x_{i}}{\partial p_{i}}=\frac{\partial x_{i}^{h}}{\partial p_{i}}+\left(-\frac{\partial x_{i}}{\partial m} x_{i}\right)
$$

Total effect $=$ substitution effect + income effect
For normal goods, the income effect is negative
For inferior goods, the income effect is positive
Substitution effect:

$$
\frac{\partial x_{i}^{h}}{\partial p_{i}}=\frac{\partial\left(\frac{\partial e}{\partial p_{i}}\right)}{\partial p_{i}}=\frac{\partial e}{\partial p_{i} \partial p_{i}}
$$

Since the expenditure function is concave in prices, $\frac{\partial e}{\partial p_{i} \partial p_{i}} \leq 0$

0.2.3 Elasticity

Income Elasticity $\eta_{i}=\frac{\frac{\partial x_{i}}{x_{i}}}{\frac{\partial y}{y}}=\frac{\partial x_{i}}{\partial y} \frac{y}{x_{i}}$
Price and Cross-Price Elasticity $\epsilon_{i j}=\frac{\frac{\partial x_{i}}{x_{i}}}{\frac{\partial p_{j}}{p_{j}}}=\frac{\partial x_{i}}{\partial p_{j}} \frac{p_{j}}{x_{i}}$.

