0.1 A few Cost Functions From Last Class

$f\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}$
Minimize cost of producing y

$$
\left(w_{1} x_{1}+w_{2} x_{2}\right)+\mu\left(y-x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)
$$

$x_{1}=\frac{\sqrt{w_{2}}}{\sqrt{w_{1}}} y, x_{2}=\frac{\sqrt{w_{1}}}{\sqrt{w_{2}}} y, c(y)=2 \sqrt{w_{1} w_{2}} y$

$$
\begin{gathered}
c(1)=2 \sqrt{w_{1} w_{2}} \\
2 \sqrt{w_{1} w_{2}} y=c(1) y
\end{gathered}
$$

Conditional factor demands and the cost function:
$f\left(x_{1}, x_{2}\right)=\log \left(x_{1}\right)+\log \left(x_{2}\right)$

$$
\left(w_{1} * x_{1}+w_{2} * x_{2}\right)+\mu\left(y-\log \left(x_{1}\right)-\log \left(x_{2}\right)\right)
$$

$x_{1} \rightarrow \frac{\sqrt{w_{2}} e^{y / 2}}{\sqrt{w_{1}}}, x_{2} \rightarrow \frac{\sqrt{w_{1}} e^{y / 2}}{\sqrt{w_{2}}}, c(y)=2 \sqrt{w_{1} w_{2}} e^{\frac{y}{2}}$
Notice that the cost function is not quite in the form $c(1) f(y)$ since:

$$
c(1)=2 \sqrt{w_{1} w_{2}} e^{\frac{1}{2}}
$$

To put this in the form $c(y)=c(1) f(y)$ we need:

$$
e^{\frac{y-1}{2}}=f(y)
$$

Now it is in the right form:

$$
c(y)=\left(2 \sqrt{w_{1} w_{2}} e^{\frac{1}{2}}\right) e^{\frac{y-1}{2}}
$$

0.2 A Separable Production Problem

Let's suppose $w_{1}=w_{2}=w_{3}=w_{4}=1$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\log \left(x_{1}\right)+\log \left(x_{2}\right)+x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}} \\
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1}\left(x_{1}, x_{2}\right)+f_{2}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Weakly separable into the groups $\left(x_{1}, x_{2}\right)$ and $\left(x_{3}, x_{4}\right)$.

To see if a function can be separated into groups. Check whether ratio of any two marginal products from a group depend only on variables from that group.

$$
\begin{gathered}
\log \left(x_{1}\right)+\log \left(x_{2}\right)+x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}} \\
\frac{\frac{\partial(f)}{\partial x_{1}}}{\frac{\partial(f)}{\partial x_{2}}}=\frac{\frac{1}{x_{1}}}{\frac{1}{x_{2}}}=\frac{x_{2}}{x_{1}} \\
\frac{\frac{\partial(f)}{\partial x_{3}}}{\frac{\partial(f)}{\partial x_{3}}}=\frac{x_{4}}{x_{3}}
\end{gathered}
$$

While this is weakly separable into groups $\left(x_{1}, x_{2}\right)$ and $\left(x_{3}, x_{4}\right)$. It is not strongly separable which would require it be separable into any groups.
To see that we can't make x_{2}, x_{3} a group note that the ration of their marginal products depends on x_{4}.

$$
\frac{\frac{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)+x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}}\right)}{\partial x_{2}}}{\frac{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)+x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}}\right)}{\partial x_{3}}}=\frac{2 \sqrt{x_{3}}}{x_{2} \sqrt{x_{4}}}
$$

This production function is strongly separable:

$$
x_{1} x_{2} x_{3} x_{4}
$$

For instance, x_{1} and x_{2} can be a group:

$$
\frac{\frac{\partial(f)}{\partial x_{1}}}{\frac{\partial(f)}{\partial x_{2}}}=\frac{x_{2} x_{3} x_{4}}{x_{1} x_{3} x_{4}}=\frac{x_{2}}{x_{1}}
$$

Any other pair of inputs would have a similar ratio of marginal products only depending on those two. Thus, this production function is strongly separable.

0.3 Separable Production

Let's use separability to help solve this cost minimization problem:
Let's suppose $w_{1}=w_{2}=w_{3}=w_{4}=1$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\log \left(x_{1}\right)+\log \left(x_{2}\right)+x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}}
$$

Rewrite the production using "intermediate goods":

$$
f\left(y_{1}, y_{2}\right)=y_{1}+y_{2}
$$

Minimize the cost of producing y using y_{1}, y_{2}. We already know the cost of producing y_{1} and y_{2} in an optimal way from our previous work on these production functions:
Recall that for $x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}$ the cost function is $c_{1}\left(y_{2}\right)=2 y_{2}$.
Recall that for $\log \left(x_{1}\right)+\log \left(x_{2}\right)$ the cost function is $c_{2}\left(y_{1}\right)=2 e^{\frac{y_{1}}{2}}$.
Thus we can write the overall cost function for y : $c(y)=c_{1}\left(y_{1}\right)+c_{2}\left(y_{2}\right)=$ $2 e^{\frac{y_{1}}{2}}+2 y_{2}$
We now minimize this cost subject to the production constraint $y=y_{1}+y_{2}$

$$
\begin{gathered}
\left(2 e^{\frac{y_{1}}{2}}+2 y_{2}\right)+\mu\left(y-y_{1}-y_{2}\right) \\
\frac{\partial\left(\left(2 e^{\frac{y_{1}}{2}}+2 y_{2}\right)+\mu\left(y-y_{1}-y_{2}\right)\right)}{\partial y_{1}}=e^{\frac{y_{1}}{2}}-\mu \\
\frac{\partial\left(\left(2 e^{\frac{y_{1}}{2}}+2 y_{2}\right)+\mu\left(y-y_{1}-y_{2}\right)\right)}{\partial y_{2}}=2-\mu
\end{gathered}
$$

Combining these:

$$
e^{\frac{y_{1}}{2}}=2
$$

Solve to get the optimal y_{1} :

$$
\begin{gathered}
\frac{y_{1}}{2}=0.693147 \\
y_{1}=1.38629
\end{gathered}
$$

Now use the production constraint to get y_{2} :

$$
\begin{gathered}
y=(1.38629)+y_{2} \\
y-1.38629=y_{2}
\end{gathered}
$$

If $y<1.38629$ then $y_{1}=y$.
If $y \geq 1.38629$ then $y_{1}=1.38629$ and $y_{2}=y-1.38629$.
We can use the conditional factor demands to get the optimal $x_{1}, x_{2}, x_{3}, x_{4}$. For instance, suppose that $y \geq 1.38629$ then $y_{1}=1.38629$. Find the optimal x_{1}, x_{2} using our original conditional factor demands:

$$
x_{1}=e^{(1.38629) / 2}, x_{2}=e^{(1.38629) / 2}
$$

1 Profit

We think of firms as agents that maximize profit.

$$
\pi=\text { revenue }- \text { cost }
$$

In terms of inputs we can write profit function as (where $p()$ is the price the firm can get for selling output $f\left(x_{1}, x_{2}\right)$:

$$
\pi\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right) p\left(f\left(x_{1}, x_{2}\right)\right)-\left(w_{1} x_{1}+w_{2} x_{2}\right)
$$

Suppose that price is fixed (price-taking assumption). This is a simplifying assumption that is only appropriate when the firm is a *very small* part of the overall market. Perfect Competition. In this case $p()$ is just a constant p and the profit function is:

$$
\pi\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right) p-\left(w_{1} x_{1}+w_{2} x_{2}\right)
$$

Let's suppose production function $x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}, w_{1}=w_{2}=1$

$$
\pi\left(x_{1}, x_{2}\right)=p * x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}-\left(x_{1}+x_{2}\right)
$$

Maximize this:

$$
\begin{gathered}
\frac{\partial\left(p * x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}-\left(x_{1}+x_{2}\right)\right)}{\partial x_{1}}=\frac{p \sqrt[4]{x_{2}}}{4 x_{1}^{3 / 4}}-1 \\
\frac{\partial\left(p * x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}-\left(x_{1}+x_{2}\right)\right)}{\partial x_{2}}=\frac{p \sqrt[4]{x_{1}}}{4 x_{2}^{3 / 4}}-1 \\
x_{1} \rightarrow \frac{p^{2}}{16}, x_{2} \rightarrow \frac{p^{2}}{16}
\end{gathered}
$$

Profit maximization implies cost minimization.

$$
\pi(q)=p(q) q-c(q)
$$

Because profit max implies cost minimization, we can rewrite the profit function purely in terms of output q :

Let's suppose we have $q=x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}$ and $w_{1}=w_{2}=1$. For this production function the cost function is:

$$
c(q)=2 q^{2}
$$

The profit function purely in terms of q in perfect competition:

$$
\pi(q)=p q-2 q^{2}
$$

Now we can maximize this by finding the one-dimensional first order condition:

$$
\begin{gathered}
\frac{\partial\left(p * q-2 q^{2}\right)}{\partial q}=p-4 q \\
q=\frac{1}{4} p
\end{gathered}
$$

Now we can work backwards to get the inputs by plugging the optimal output into the conditional factor demands for x_{1} and x_{2} which in this case would give us:

$$
x_{1}=x_{2}=\frac{1}{16} p^{2}
$$

1.1 Linear Cost

Writing the profit function in terms of q makes it easy to see when there is no profit maximizing level output or when the profit maximizing level is 0 . For instance, suppose:
$f\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}$, and $w_{1}=w_{2}=1$.
The profit function in terms of q is:

$$
\pi(q)=p q-2 q=(p-2) q
$$

Thus, if $p<2$ then the optimal is $q=0$ and if $p>2$ there is no optimal output.

1.2 Example 2

Let $w_{1}=w_{2}=1$. Suppose a firm's production function is $f\left(x_{1}, x_{2}\right)=\log \left(x_{1}\right)+$ $\log \left(x_{2}\right)$.

$$
c(y)=2 e^{\frac{y}{2}}
$$

Profit:

$$
p * y-2 e^{\frac{y}{2}}
$$

Maximize this:

$$
\begin{gathered}
\frac{\partial\left(p * y-2 e^{\frac{y}{2}}\right)}{\partial y}=p-e^{y / 2} \\
p=e^{y / 2} \\
y=2 \log (p)
\end{gathered}
$$

1.3 The Profit Function

The "profit function" is analogous to the cost function and the profit of the firm evaluated at the optimal q^{*} and cost minimized inputs. It is $\pi(p, w)=$ $\max _{q} p q-c(q)=\operatorname{Max}_{x} p q-\left(w_{1} x_{1}+w_{2} x_{2}\right)$. When well defined and under the assumption of perfect competition it has the following properties:

Properties of the profit function in perfect competition:

1. Increasing in p,
2. Decreasing in w,
3. Homogeneous of degree one in p, w
4. Convex in p, w (why)
5. Hotelling: $\frac{\partial \pi}{\partial p}=q(p, w),-\frac{\partial \pi}{\partial w_{i}}=x_{i}(p, w)$

Combining 4 and 5 we can prove that, output is increasing in price (weakly), and any input is weakly decreasing in it's own wage (this is the substitution effect for production) $\frac{\partial q}{\partial p} \geq 0, \frac{\partial x_{i}}{\partial w_{i}} \leq 0$.

