Part I

Markets feat. Cournot

1 The Cournot Oligopoly Model

Under price taking:

$$
\pi(q)=q p-c(q)
$$

What should we do with p if we relax this assumption?

$$
\pi(q)=q p(q)-c(q)
$$

If this firm was a monopoly, the could charge as much as consumers are willing to pay to buy q units. Inverse demand.
A demand function:

$$
q=\frac{\frac{1}{2} M}{p}
$$

Inverse demand:

$$
p=\frac{\frac{1}{2} M}{q}
$$

If a firm was a monopolist facing this demand function:

$$
\pi(q)=q \frac{\frac{1}{2} M}{q}-c(q)
$$

Suppose $c(q)=q^{2}$

$$
\begin{aligned}
& \pi(q)=q \frac{\frac{1}{2} M}{q}-q^{2} \\
& \pi(q)=\frac{1}{2} M-q^{2}
\end{aligned}
$$

1.1 Another Monopoly Problem

$q(p)=100-p$. Inverse demand $p(q)=100-q$. Let's assume $c(q)=q^{2}$.

$$
\begin{gathered}
\pi(q)=q(100-q)-q^{2} \\
\frac{\partial\left(q(100-q)-q^{2}\right)}{\partial q}=100-4 q \\
q=25 \\
p(q)=100-p=100-25=75 \\
\pi(q)=25(75)-25^{2}=1250
\end{gathered}
$$

1.2 Cournot Oligopoly

There are two firms with the same cost function $c(q)=2 q^{2}$ market demand is $Q=\frac{100}{p}$. Inverse demand $p=\frac{100}{Q}$.

$$
\begin{gathered}
\pi_{1}\left(q_{1}, q_{2}\right)=q_{1} \frac{100}{q_{1}+q_{2}}-2 q_{1}^{2} \\
\frac{\partial\left(q_{1} \frac{100}{q_{1}+q_{2}}-2 q_{1}^{2}\right)}{\partial q_{1}}=-\frac{100 q_{1}}{\left(q_{1}+q_{2}\right)^{2}}-4 q_{1}+\frac{100}{q_{1}+q_{2}} \\
-\frac{100 q_{1}}{\left(q_{1}+q_{2}\right)^{2}}-4 q_{1}+\frac{100}{q_{1}+q_{2}}=0
\end{gathered}
$$

Compare this to perfect competition first order condition:

$$
\begin{gathered}
p q-c(q) \\
p-m c(q)=0 \\
-\frac{100 q_{1}}{\left(q_{1}+q_{2}\right)^{2}}+\frac{100}{q_{1}+q_{2}}-4 q_{1}=0
\end{gathered}
$$

The new indirect term $-\frac{100 q_{1}}{\left(q_{1}+q_{2}\right)^{2}}$ is accounting for how price changes when I change my quantity.

1.3 Simpler Cournot

$c(q)=q^{2} . p(Q)=100-Q$

$$
\begin{gathered}
\pi_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-q_{1}^{2} \\
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-q_{1}^{2}\right)}{\partial q_{1}}=-4 q_{1}-q_{2}+100 \\
\text { Solve }\left[-4 q_{1}-q_{2}+100==0\right] \\
q_{1}=\frac{1}{4}\left(100-q_{2}\right)
\end{gathered}
$$

This is what we call a best response function.

$$
q_{2}=\frac{1}{4}\left(100-q_{1}\right)
$$

Suppose firm one $\operatorname{knows} q_{2}=30$. What would firm 1 like to do?

$$
\begin{gathered}
\pi_{1}\left(q_{1}, 30\right)=q_{1}\left(100-\left(q_{1}+30\right)\right)-q_{1}^{2} \\
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+30\right)\right)-q_{1}^{2}\right)}{\partial q_{1}}=70-4 q_{1} \\
q_{1} \rightarrow \frac{35}{2}
\end{gathered}
$$

This is the same as we get by plugging $q_{2}=30$ into the best response:

$$
\begin{gathered}
q_{1}=\frac{1}{4}(100-30) \\
q_{1}=\frac{35}{2}
\end{gathered}
$$

What would firm 2 like to do?

$$
q_{2}=\frac{1}{4}\left(100-\frac{35}{2}\right)=\frac{165}{8} \neq 30
$$

Given the set of choices $\left(\frac{35}{2}, 30\right)$ some firm (in this case firm 2) has incentive to change what they are doing.
To find a profile of choices where this doesn't happen, solve the best response functions simultaneously.

$$
\begin{gathered}
q_{1}=\frac{1}{4}\left(100-q_{2}\right) \\
q_{2}=\frac{1}{4}\left(100-q_{1}\right) \\
\text { Solve }\left[\left\{q_{1}=\frac{1}{4}\left(100-q_{2}\right), q_{2}=\frac{1}{4}\left(100-q_{1}\right)\right\},\left\{q_{1}, q_{2}\right\}\right] \\
\left\{\left\{q_{1} \rightarrow 20, q_{2} \rightarrow 20\right\}\right\}
\end{gathered}
$$

We have a name for a situation where profile of choices are mutually best responses. Nash Equilibrium.
A symmetric nash equilibrium is a $q=q_{1}=q_{2}$ that solves:

$$
\begin{aligned}
& q=\frac{1}{4}(100-q) \\
& q=\frac{1}{4}(100-q)
\end{aligned}
$$

When we want to solve for symmetric eq. we can impose symmetry on the best response of any of the firms and solve the resulting equation:

$$
\begin{gathered}
\text { Solve }\left[q=\frac{1}{4}(100-q)\right] \\
q=20
\end{gathered}
$$

1.4 What's a Game?

A game is a set $\Gamma=\{P, S, \pi\}$. P is the set of players, S is the set of sets of strategies for each player, π are the payoffs functions mapping S into \mathbb{R}^{n}. Players are firm 1 and firm 2: $P=\{1,2\}$
$S=\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$. Player 1 chooses a quantity $q_{1} \in \mathbb{R}_{+}$. Player 2 chooses a quantity $q_{2} \in \mathbb{R}_{+}$.
Payoffs. π_{1} profit and π_{2}.
The nash equilibrium of a game is a set of strategies that are mutually best responses. They are strategies that maximize each player's profit conditional on the strategies of the others.

1.5 Cournot Oligopoly with N firms:

$$
\begin{gathered}
c(q)=q^{2} \cdot p(Q)=100-Q . \text { Let } Q_{-i}=Q-q_{i} \\
\pi_{i}\left(q_{i}, Q_{-i}\right)=q_{i}\left(100-\left(q_{i}+Q_{-i}\right)\right)-q_{i}^{2} \\
\frac{\partial\left(q_{i}\left(100-\left(q_{i}+Q_{-i}\right)\right)-q_{i}^{2}\right)}{\partial q_{i}}=-4 q_{i}-Q_{-i}+100
\end{gathered}
$$

The best response function:

$$
q_{i}=\frac{1}{4}\left(100-Q_{-i}\right)
$$

If we want to find a symmetric equilibrium. Impose symmetry:

$$
q=\frac{1}{4}(100-(N-1) q)
$$

The Nash equilibrium. Each firm produces $q^{*}(N)$

$$
q^{*}(N)=\frac{100}{N+3}
$$

Let's look at some special cases:

$$
\begin{aligned}
& q^{*}(2)=\frac{100}{2+3}=20 \\
& q^{*}(1)=\frac{100}{1+3}=25 \\
& \lim _{N \rightarrow \infty} q^{*}(N)=0
\end{aligned}
$$

Market Quantity:

$$
Q^{*}(N)=N \frac{100}{N+3}
$$

Market Price in Equilibrium:

$$
p^{*}(N)=100-Q=100-N \frac{100}{N+3}
$$

Profit of each firm:

$$
\begin{gathered}
\pi\left(q^{*}(N)\right)=\frac{100}{N+3}\left(100-N \frac{100}{N+3}\right)-\frac{100}{N+3}^{2} \\
\left(\begin{array}{cccc}
1 & 75 . & 25 . & 1250 . \\
2 & 60 . & 40 . & 800 . \\
5 & 37.5 & 62.5 & 312.5 \\
10 & 23.0769 & 76.9231 & 118.343 \\
100 & 2.91262 & 97.0874 & 1.88519 \\
1000 & 0.299103 & 99.7009 & 0.0198805
\end{array}\right)
\end{gathered}
$$

1.6 Equilibrium

The best response correspondence $B_{i}\left(S_{-i}\right)$ for player i is given by $B_{i}\left(S_{-i}\right)=$ $\left\{s_{i} \mid s_{i} \in S_{i} s_{i} \in \arg \cdot \max _{S_{i}} \pi_{i}\left(s_{i}, S_{-i}\right)\right\}$. A Nash equilibrium requires that all players are best responding to each-others strategies. A strategy profile $s=$ $\left(s_{1}, \ldots, s_{n}\right)$ is called a Nash equilibrium if for all $i \in\{1, \ldots, n\}, s_{i} \in B\left(S_{-i}\right)$.

1.7 J Firms

1.8 How Reasonable is Price Taking?

1.9 Solved Examples

1.9.1 Entry With Cournot.

Suppose it costs $\$ 1$ to enter this market.

1.9.2 Asymmetric Cournot

Asymmetric Cournot. Suppose there are now two firms with different cost functions: $c_{1}\left(q_{1}\right)=2 q_{1}^{2}, c_{2}\left(q_{2}\right)=2 q_{2}^{\frac{3}{2}}$. What are the quantities of the two firms in Nash equilibrium?

1.10 Stackleberg Model of Sequential Quantity-Setting

Stackleberg Model Suppose cost is $2 q^{2}$ with inverse demand of $p=100-Q$. Firm one moves first, choosing q_{1}. Firm 2 observes q_{1} and then chooses q_{2}. What are q_{1} and q_{2} in equilibrium?

1.11 Colluding Firms

Let's stick with demand of $100-p$ and and cost $2 q^{2}$ for each firm.

