1 Modified Cournot Models

1.1 Warm-up.

Suppose cost is $2 q^{2}$ with inverse demand of $p=100-Q$. There are two firms.

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-2 q_{1}^{2} \\
& \pi_{2}\left(q_{1}, q_{2}\right)=q_{2}\left(100-\left(q_{1}+q_{2}\right)\right)-2 q_{2}^{2}
\end{aligned}
$$

Firm 1's first order condition:

$$
-6 q_{1}-q_{2}+100=0
$$

Best response for firm i :

$$
q_{i}=\frac{1}{6}\left(100-q_{j}\right)
$$

To find equilibrium, impose symmetry ($\operatorname{set} q_{1}=q_{2}=q$) on the best response.

$$
\begin{gathered}
q=\frac{1}{6}(100-q) \\
q=\frac{100}{7.0} \approx 14.2857
\end{gathered}
$$

If we had J firms:

$$
\begin{gathered}
q_{i}=\frac{1}{6}\left(100-Q_{-i}\right) \\
q=\frac{1}{6}(100-(J-1) q) \\
q \rightarrow \frac{100}{J+5}
\end{gathered}
$$

1.2 Stackleberg Model of Sequential Quantity-Setting

Suppose cost is $2 q^{2}$ with inverse demand of $p=100-Q$. Firm one sets q_{1}. Firm two observes q_{1} and sets q_{2}.

We work backwards to find the subgame perfect nash equilibrium. Their best response to q_{1} is the same as before.

$$
q_{2}=\frac{1}{6}\left(100-q_{1}\right)
$$

We now write firm 1's profit function taking into account what firm 2 will do given firm's ones decision: q_{1}.

$$
\begin{gathered}
\pi\left(q_{1}\right)=q_{1}\left(100-\left(q_{1}+\frac{1}{6}\left(100-q_{1}\right)\right)\right)-2 q_{1}^{2} \\
\frac{\partial\left(q_{1}\left(100-\left(q_{1}+\frac{1}{6}\left(100-q_{1}\right)\right)\right)-2 q_{1}^{2}\right)}{\partial q_{1}}=\frac{1}{6}\left(q_{1}-100\right)-\frac{35 q_{1}}{6}+100
\end{gathered}
$$

Optimal q_{1} solves first order condition:

$$
\begin{gathered}
\frac{1}{6}\left(q_{1}-100\right)-\frac{35 q_{1}}{6}+100==0 \\
q_{1}=\frac{250}{17.0}=14.7059
\end{gathered}
$$

Firm two best responds:

$$
\begin{gathered}
q_{2}=\frac{1}{6}\left(100-\frac{250}{17.0}\right)=14.2157 \\
\pi_{1}(14.7059,14.2157)=14.7059(100-(14.7059+14.2157))-2(14.7059)^{2}=612.745 \\
\pi_{2}=14.2157(100-(14.7059+14.2157))-2(14.2157)^{2}=606.257
\end{gathered}
$$

Let's compare to the profit in the simultaneous game equilibrium:

$$
\pi\left(\frac{100}{7}, \frac{100}{7}\right)=\left(\frac{100}{7}\right)\left(100-\left(\frac{100}{7}+\frac{100}{7}\right)\right)-2\left(\frac{100}{7}\right)^{2}=612.245
$$

1.3 Collusion and Repeated Games

Suppose cost is $2 q^{2}$ with inverse demand of $p=100-Q$. There are two firms.

$$
\pi_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(100-\left(q_{1}+q_{2}\right)\right)-2 q_{1}^{2}
$$

Suppose the firms got together and decided to agree on a quantity q to maximize their profits.

They solve this problem. Maximize:

$$
\begin{gathered}
\pi_{1}(q, q)=q(100-(q+q))-2 q^{2} \\
100-8 q=0
\end{gathered}
$$

$$
\begin{gathered}
q=\frac{100}{8}=12.5 \\
\pi_{i}\left(\frac{100}{8}, \frac{100}{8}\right)=\frac{100}{8}\left(100-2 \frac{100}{8}\right)-2\left(\frac{100}{8}\right)^{2} \\
\pi=625
\end{gathered}
$$

What would either firm want to do if they truly believe the other is going to go along with the collusion? Firm 1 wants to best respond:

$$
\begin{gathered}
q_{1}=\frac{1}{6}\left(100-q_{2}\right) \\
q_{1}=\frac{1}{6}\left(100-\frac{100}{8}\right) \\
q_{1}=\frac{175}{12.0}=14.5833
\end{gathered}
$$

If this firm devates, it earns:

$$
\begin{gathered}
\pi(14.5833,12.5)=14.5833(100-(14.5833+12.5))-2(14.5833)^{2} \\
\pi_{1}=638.021 \\
\pi_{2}=598.959
\end{gathered}
$$

