0.1 Risk Premium.

The difference between the certainty equivalent and the expected value of the gamble. Let c be the certainty equivalent for gamble g. Then risk premium r is:

$$
r=E_{g}\left(a_{i}\right)-c
$$

$\left(\frac{1}{2} \circ 10, \frac{1}{2} \circ 0\right)$ expected value is 5
Suppose $c=4$.
Risk premium 1.

1 The Firm's Problem

Minimize the cost of producing output y.

$$
w \cdot x=\sum w_{i} x_{i}
$$

Production constraint $f(\boldsymbol{x})=y$

$$
\min p x \text { s.t. } u(x) \geq u
$$

Production is inherently cardinal.

$$
2 f(x)
$$

Is two times more productive a technology than

$$
f(x)
$$

We can't take monotonic transformations in the firm's problem.

1.1 The Firm's Problem: Cost Minimization.

$$
\begin{gathered}
\left(w_{1} x_{1}+w_{2} x_{2}\right)+\mu\left(y-f\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial\left(\left(w_{1} x_{1}+w_{2} x_{2}\right)+\mu\left(y-f\left(x_{1}, x_{2}\right)\right)\right)}{\partial x_{1}}=0 \\
w_{1}=\mu \frac{\partial f}{\partial x_{1}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{w_{1}}{\frac{\partial f}{\partial x_{1}}}=\mu \\
\frac{\partial\left(\left(w_{1} x_{1}+w_{2} x_{2}\right)+\mu\left(y-f\left(x_{1}, x_{2}\right)\right)\right)}{\partial x_{2}}=0 \\
w_{2}=\mu \frac{\partial f}{\partial x_{2}} \\
\frac{w_{2}}{\frac{\partial f}{\partial x_{2}}}=\mu
\end{gathered}
$$

$m p_{1}=\frac{\partial f}{\partial x_{1}}$ is the marginal product. How output changes when I "increase x_{1} by one unit".
How much does it cost me to increase output by 1 unit using input one?
Suppose $m p_{1}=1$ but $w_{1}=2$. $\frac{w_{1}}{m p_{1}}$ is 2 . This is how much is costs to increase output by one unit using x_{1}.
Suppose $m p_{1}=2$ but $w_{1}=1 . \frac{w_{1}}{m p_{1}}$ is $\frac{1}{2}$. This is how much is costs to increase output by one unit using x_{1}.
$\frac{w_{i}}{m p_{i}}$ is the cost of increasing output by one unit using input i.
At the optimum, this has to be the same for all inputs we are using.

1.2 Cost Function

5. Concave in w.

Why?
Choose $\left(x_{1}, x_{2}\right)$

$$
\min \left(w_{1} x_{1}+w_{2} x_{2}\right)
$$

1.3 An Example- Cobb Douglass Production.

Suppose the production function is $f(x)=x_{1}^{\alpha} x_{2}^{\alpha}$.

$$
x_{1}^{\alpha} x_{2}^{\alpha}
$$

First order conditions.

$$
\begin{aligned}
& \mu=\frac{w_{1}}{\frac{\partial\left(x_{1}^{\alpha} x_{2}^{\alpha}\right)}{\partial x_{1}}}=\frac{w_{1} x_{1}^{1-\alpha} x_{2}^{-\alpha}}{\alpha} \\
& \mu=\frac{w_{2}}{\frac{\partial\left(x_{1}^{\alpha} x_{2}^{\alpha}\right)}{\partial x_{2}}}=\frac{w_{2} x_{1}^{-\alpha} x_{2}^{1-\alpha}}{\alpha}
\end{aligned}
$$

Production constraint:

$$
\begin{gathered}
x_{1}^{\alpha} x_{2}^{\alpha}=y \\
\frac{w_{1} x_{1}^{1-\alpha} x_{2}^{-\alpha}}{\alpha}=\frac{w_{2} x_{1}^{-\alpha} x_{2}^{1-\alpha}}{\alpha} \\
\frac{x_{2}}{x_{1}}=\frac{w_{1}}{w_{2}} \\
w_{2} x_{2}=w_{1} x_{1}
\end{gathered}
$$

$$
\text { Solve }\left[\left\{w_{2} x_{2}==w_{1} x_{1}, x_{1}^{\alpha} x_{2}^{\alpha}==y\right\},\left\{x_{1}, x_{2}\right\}\right]
$$

Conditional factor demands:

$$
x_{1}=y^{\frac{1}{2 \alpha}} \sqrt{\frac{w_{2}}{w_{1}}}, x_{2}=y^{\frac{1}{2 \alpha}} \sqrt{\frac{w_{1}}{w_{2}}}
$$

Cost function

$$
\begin{array}{r}
w_{1} y^{\frac{1}{2 \alpha}} \sqrt{\frac{w_{2}}{w_{1}}}+w_{2} y^{\frac{1}{2 \alpha}} \sqrt{\frac{w_{1}}{w_{2}}}=y^{\frac{1}{2 \alpha}} 2 \sqrt{w_{1} w_{2}} \\
x_{1}(1, w)=\sqrt{\frac{w_{2}}{w_{1}}}, x_{2}(1, w)=\sqrt{\frac{w_{1}}{w_{2}}}, c(1, w)=2 \sqrt{w_{1} w_{2}}
\end{array}
$$

Notice:

$$
x_{1}=y^{\frac{1}{2 \alpha}} x_{1}(1, w)
$$

Notice that the original production function is homogeneous of degree 2α. The cost function:

$$
c(y, w)=y^{\frac{1}{2 \alpha}} c(1, w)
$$

1.4 Another Example

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+\ln \left(x_{2}\right) & \\
& \frac{w_{1}}{\frac{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)\right)}{\partial x_{1}}}=\mu \\
& \frac{w_{2}}{\frac{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)\right)}{\partial x_{2}}}=\mu \\
& \log \left(x_{1}\right)+\log \left(x_{2}\right)=y
\end{aligned}
$$

$\operatorname{Solve}\left[\left\{\frac{w_{1}}{\frac{w_{2}}{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)\right)}} \partial=\mu, \frac{x_{1}}{\frac{\partial\left(\log \left(x_{1}\right)+\log \left(x_{2}\right)\right)}{\partial x_{2}}}==\mu, \log \left(x_{1}\right)+\log \left(x_{2}\right)==y\right\},\left\{x_{1}, x_{2}, \mu\right\}\right]$

$$
x_{1}=\frac{\sqrt{w_{2}} e^{y / 2}}{\sqrt{w_{1}}}, x_{2}=\frac{\sqrt{w_{1}} e^{y / 2}}{\sqrt{w_{2}}}, \mu=\sqrt{w_{1}} \sqrt{w_{2}} e^{y / 2}
$$

$$
w_{1}=w_{2}=1
$$

$$
\begin{array}{r}
x_{1}=e^{y / 2}, x_{2}=e^{y / 2}, \mu=e^{y / 2} \\
\log \left(x_{1}\right)+\log \left(x_{2}\right) \\
m p_{i}=\frac{1}{x_{i}} \\
\frac{1}{\frac{1}{e^{y / 2}}}=e^{\frac{y}{2}} \\
x_{1}=\frac{\sqrt{w_{2}} e^{1 / 2}}{\sqrt{w_{1}}}, x_{2}=\frac{\sqrt{w_{1}} e^{1 / 2}}{\sqrt{w_{2}}}, \mu=\sqrt{w_{1}} \sqrt{w_{2}} e^{y / 2} \\
\mu=w_{2} e^{1 / 2}
\end{array}
$$

1.5 Homogeneous/Homothetic Production

For homogeneous production of degree α :

$$
\begin{aligned}
& x_{i}(y, w)=y^{\frac{1}{\alpha}} x_{i}(1, w) \\
& c(y, w)=y^{\frac{1}{\alpha}} c(1, w)
\end{aligned}
$$

For homothetic production there exists some increasing function of $f(y)$ such that:

$$
\begin{aligned}
& x(y, w)=f(y) x(1, w) \\
& x(y, w)=f(y) c(1, w)
\end{aligned}
$$

1.6 Separability

$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y$

$$
\begin{gathered}
x_{1}^{\alpha} x_{2}^{\alpha}+\log \left(x_{3}\right)+\log \left(x_{4}\right) \\
f_{1}\left(x_{1}, x_{2}\right)+f_{2}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Suppose I want to produce y_{1} using just f_{1}

$$
c_{1}\left(y_{1}, w\right)
$$

Suppose I want to produce y_{2} using just f_{2}

$$
c_{2}\left(y_{2}, w\right)
$$

$y=y_{1}+y_{2}$

$$
\operatorname{Min}\left(c_{1}\left(y_{1}\right)+c_{2}\left(y_{2}\right)\right)
$$

1.7 From the example.

$$
\begin{aligned}
& c_{1}\left(y_{1}, w\right)=y_{1}^{\frac{1}{2 \alpha}} 2 \sqrt{w_{1} w_{2}} \\
& c_{2}\left(y_{2}, w\right)=2 \sqrt{w_{3} w_{4}} e^{y_{2} / 2}
\end{aligned}
$$

$$
y_{1}^{\frac{1}{2 \alpha}} 2 \sqrt{w_{1} w_{2}}+2 \sqrt{w_{3} w_{4}} e^{y_{2} / 2}
$$

$$
\begin{aligned}
& y_{1}+y_{2} \geq y \\
& w_{1}=w_{2}=w_{3}=w_{4}=1
\end{aligned}
$$

$$
\begin{gathered}
y_{1}^{\frac{1}{2 \alpha}} 2+2 e^{y_{2} / 2}+\mu\left(y-\left(y_{1}+y_{2}\right)\right) \\
\frac{\partial\left(y_{1}^{\frac{1}{2 \alpha}} 2+2 e^{y_{2} / 2}+\mu\left(y-\left(y_{1}+y_{2}\right)\right)\right)}{\partial y_{1}}=\frac{y_{1}^{\frac{1}{2 \alpha}-1}}{\alpha}-\mu \\
\frac{\partial\left(y_{1}^{\frac{1}{2 \alpha}} 2+2 e^{y_{2} / 2}+\mu\left(y-\left(y_{1}+y_{2}\right)\right)\right)}{\partial y_{2}}=e^{\frac{y_{2}}{2}}-\mu \\
\operatorname{Solve}\left[\frac{y_{1}^{\frac{1}{2 \alpha}-1}}{\alpha}==e^{\frac{y-y_{1}}{2}}, y_{1}\right]
\end{gathered}
$$

Weakly separable.
$f\left(g_{1}\left(x_{1}, x_{2}\right), g_{2}\left(x_{3}, x_{4}\right)\right)$.
Ratio of Partials.
Strongly Separable
Ratio of Partials.

1.8 A Separable Production Problem

$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\ln \left(x_{1}\right)+\ln \left(x_{2}\right)+\left(x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}}\right)$.

$$
\left(x_{3}^{\frac{1}{2}} x_{4}^{\frac{1}{2}}\right)
$$

2 Profit

2.1 Perfect Competition

Suppose a firm's production function is $f\left(x_{1}, x_{2}\right)=x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{4}}$ and is in perfect competition. Their cost function is $c(q, w)=2\left(w_{1} w_{2}\right)^{\frac{1}{2}} q^{2}$.

2.2 The Profit Function

Properties of the profit function in perfect competition:

1. Increasing in p,
2. Decreasing in w,
3. Homogeneous of degree one in p, w
4. Convex in p, w (why)
5. Hotelling: $\frac{\partial \pi}{\partial p}=q(p, w),-\frac{\partial \pi}{\partial w_{i}}=x_{i}(p, w)$

Combining 4 and 5 we can prove that, output is increasing in price (weakly), and any input is weakly decreasing in it's own wage (this is the substitution effect for production) $\frac{\partial q}{\partial p} \geq 0, \frac{\partial x_{i}}{\partial w_{i}} \leq 0$.

Part I

Markets feat. Cournot

