Choice.

Objects and Sets.
X "Choice Set" (Universe of Choice Objects)
x choice objects, objects, bundles
The choice set is all the choice objects that might be relevant for your model.
$X=\{$ scoop of vanilla, scoop of chocole, scoop of strawberry $\}$
$X=$ Every bowl of ice cream with any amount of scoops of vanilla chocolate or strawberry.
$(1,0,0)$ one scoop of vanilla
$(0,1,0)$ one scoop of chocolate
$(1,1,1)$ one scoop of each
$X=\mathbb{R}_{+}^{3}$
$(0,0,0) \in X$
x is a bundle. $x \in X$ if the bundle is in the choice set.
$X=\left\{x \mid x \in \mathbb{R}_{+}^{3} \& x \neq(0,0,0)\right\}=\mathbb{R}_{++}^{3}$
All bowls of ice cream with no more than one total scoop of the three flavors.
$X=\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \& x_{i} \geq 0 \& \sum_{i=1}^{3} x_{i} \leq 1\right\}$
All bowls of ice cream where each flavor has zero or an odd number of scoops.
$X=\left\{x \mid x=\mathbb{R}_{+}^{3} \& \forall i \in\{1,2,3\},\left(\exists n \in\left\{\frac{1}{2} \cup \mathbb{N}\right\}: x_{i}=2 n-1\right)\right\}$
Let $(\mathbb{O}$ be the odd integers including zero.

$$
X=\left\{x \mid x=\mathbb{R}_{+}^{3} \& \forall i \in\{1,2,3\}, x_{i} \in \mathbb{O}\right\}
$$

Budget set B is the set of choice objects actually available to a decision maker at some point in the model.
$B \subseteq X$
$X=\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \& x_{i} \geq 0 \& \sum_{i=1}^{3} x_{i} \leq 1\right\}$
Finn's budget set when we go to Jeni's. Finn can have up to one scoop of ice cream.
$X=\mathbb{R}_{+}^{3}$
$B=\left\{x \mid x \in X \& x_{i} \geq 0 \& \sum_{i=1}^{3} x_{i} \leq 1\right\}$
For Dad, the budget set is all bowls that cost less than $\$ 15$. A scoop of ice cream is $\$ 5$. This is a "competitive budget set".
$B=\left\{x \mid x \in X \& 5 x_{1}+5 x_{2}+5 x_{3} \leq 15\right\}$
Suppose p_{1}, p_{2}, p_{3} and my income or amount of money to spend is m. The bundle you buy has to be affordable (and adorable).
$B=\left\{x \mid x \in X \& \sum_{i=1}^{n} p_{i} x_{i} \leq m\right\}$

