X - Choice set, universe of choice objects, consumption set.
The set of all "bundles" or choice objects in your model.
Common assumptions on X :
Euclidean: $X \subseteq \mathbb{R}_{+}^{n}$.
Non-empty: $X \neq \emptyset$.
Closed: X is closed.
Why does it need to be closed?
Any amount of ice cream scoops up to but not including 10 scoops.
$X=[0,10)$. There is no optimal amount of ice cream for Finn here even if he likes more rather than less.
Convex: X is convex. (Between any two points in the set, the points between those two points are in the set.)

$$
x, y \in X
$$

Implies for all $t \in[0,1]$:

$$
t x+(1-t) y \in X
$$

Suppose $x=(1,0)$ and $y=(0,1)$. Then bundles like:

$$
\begin{aligned}
& \frac{1}{2}(1,0)+\frac{1}{2}(0,1)=\left(\frac{1}{2}, \frac{1}{2}\right) \in X \\
& \frac{3}{4}(1,0)+\frac{1}{4}(0,1)=\left(\frac{3}{4}, \frac{1}{4}\right) \in X
\end{aligned}
$$

1 Preference Relations

How does a consumer choose from a budget set B ?
There are two possibilities for a foundation of "choice".

2 Choice Functions

A choice function C is a mapping from B into itself. A selection from every possible budget.
The set of all budget sets $\mathscr{B}=P(X)$ (power set- the set of all subsets).

The formal definition of a choice set: $C: \mathscr{B} \rightarrow X$ such that if $x \in C(B)$ then $x \in B$.
$X=\{a, b, c\}$
$\mathscr{B}=P(\{a, b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
Here is a choice function for the set $\{a, b, c\}$:
This might be choice function for someone who likes a best, b second best, and c third best:
$C(\emptyset)=\emptyset, C(\{a\})=\{a\}, C(\{b\})=\{b\}, C(\{c\})=\{c\}, C(\{a, b\})=a$, $C(\{b, c\})=\{b\}, C(\{a, c\})=\{a\}, C(\{a, b, c\})=\{a\}$
Here's a choice function that is a littler weirder
$C(\emptyset)=\emptyset, C(\{a\})=\emptyset, C(\{b\})=\{b\}, C(\{c\})=\{c\}, C(\{a, b\})=\{a, b\}$,
$C(\{b, c\})=\emptyset, C(\{a, c\})=\{c\}, C(\{a, b, c\})=\{a, b, c\}$
Here's another weird one:
$C(\emptyset)=\emptyset, C(\{a\})=\{a\}, C(\{b\})=\{b\}, C(\{c\})=\{c\}, C(\{a, b\})=a$, $C(\{b, c\})=\{b\}, C(\{a, c\})=\{c\}, C(\{a, b, c\})=\{a\}$
Here's another weird one (incoherent choice):
$C(\emptyset)=\emptyset, C(\{a\})=\{a\}, C(\{b\})=\{b\}, C(\{c\})=\{c\}, C(\{a, b\})=a$,
$C(\{b, c\})=\{b\}, C(\{a, c\})=\{c\}, C(\{a, b, c\})=\{b\}$
\# (cardinality function)
$\#(\{a, b, c\})=3$
$\#(\mathbb{Z})=\aleph_{0}$ (aleph-null, the smallest infinity, "countably infinite")
$\#(\mathbb{R})=\aleph_{1}$ (aleph-one, the (possibly next-largest infinity), "uncountable")
For a finite set, X with $\#(X)=n, \# P(X)=2^{n}$
$X=\{a, b, c\}$
Represent the set $\{a\}$ with boolean vector $(1,0,0),\{a, b, c\}(1,1,1)$.

3 Preference Relation

The mathematical tool we use to formalize the idea of preference is the "relation". Example:
"At least as tall as." on the set of humans.
Not true for 'Greg','Shaq'
Is true for 'Shaq','Greg'
Formally, a relation \succsim on set X is a subset of the ordered pairs of X.

$$
\succsim \subseteq X \times X
$$

For instance, if \succsim is the "at least as tall as relation":

$$
(\text { Shaq, Greg }) \in \succsim
$$

$$
(G r e g, S h a q) \notin \succsim
$$

$$
(\text { Greg, Greg }) \in \succsim
$$

The opposite of the relation can be defined easily because of the set-theoretic foundation, we just take the complement $\prec=\succsim^{C}$. For our example above, this becomes the "strictly shorter than" relation.

$$
\begin{aligned}
& (\text { Shaq, Greg }) \notin \prec \\
& (\text { Greg }, \text { Shaq }) \in \prec
\end{aligned}
$$

$$
(\text { Greg, Greg }) \notin \prec
$$

It is often more convenient to use infix notation. The infix statement " $x \succsim y$ " is equivalent to $(x, y) \in \succsim$. Examples from our original "at least as tall as" relation:

Shaq $\succsim G r e g$ ("Shaq is at least as big as Greg.")

Greg $\nsucceq S h a q$

Greg $\succsim G r e g$

