1 Preferences

1.1 Rational Preferences

$C(B)$
All of the elements of B that are at least as good as everything else.
All of the elements of B that are not strictly worse than anything else.
Complete, Acyclic \succsim is equivalent to non-empty choice for every finite B.
This is weaker than rationality.
Rationality (complete and transitive \succsim) is equivelent to Coherent Choice and Finite Non-Emptyness.
$C(\{a, b\})=\{a\} C(\{a, b, c\})=\{b\}$
Independence of Irrelevant Alternatives (Decision Theory)
A directed graph is a cyclic if and only if every vertex-induced subgraph has a vertex with in-degree zero.

1.2 Contour Sets

Sets derived from \succsim.
$\sim(x)=\{y \mid y \in X$ and $y \sim x\}$
$\succsim(x)$ (upper contour set, weakly preferred set)
$\succ(x)$ (strict....)
$\precsim(x)$ (lower contour set, weakly less preferred set)
$\prec(x)$

1.3 Properties: Rational Preferences

The follow two properties apply to rational preferences. (Complete and Transitive).

1.3.1 Containment

Rational \succsim is equivalent to:

$$
\begin{gathered}
x \succsim y \Leftrightarrow \succsim(x) \subseteq \succsim(y) \\
\quad \Leftrightarrow \precsim(y) \subseteq \precsim(x)
\end{gathered}
$$

Example: $a \succ b \succ c \succ d$

$$
\succsim(b)=\{a, b\}, \succsim(c)=\{a, b, c\}
$$

$$
\begin{gathered}
\{a, b\} \subseteq\{a, b, c\} \\
\precsim(b)=\{b, c, d\}, \precsim(c)=\{c, d\}
\end{gathered}
$$

1.3.2 Indifference Curves Don't Cross

If two bundles are not indifferent then their indifference sets do not overlap (have an empty intersection)
If $x \succ y$ then $\sim(x) \cap \sim(y)=\emptyset$

2 Utility

A utility function is a quantitative/cardinal representation of preferences. It is an assignment of numbers meant to represent these preferences.
$U: X \rightarrow \mathbb{R}$
A utility represents \succsim when:

$$
x \succsim y \Leftrightarrow U(x) \geq U(y)
$$

$a \succ b \succ c \succ d$

$$
\begin{gathered}
U(a)=4, U(b)=3, U(c)=2, U(d)=1 \\
U(a)=30000000, U(b)=2, U(c)=1, U(d)=-10
\end{gathered}
$$

2.1 U under Finite X

For finite X, the existence of a utility function that represents X is equivalent to \succsim being complete and transitive.
The \Rightarrow is somewhat trivial since the completeness and transitivity of \geq is imparted on \succsim.
Prove \Leftarrow. If rational \succsim then exists U that represents \succsim.
Define $U(x)=\#(\precsim(x))$ (cardinality of the lower contour set: how many things are in it?)
$a \succ b \succ c \succ d$

$$
U(a)=4, U(b)=3, U(c)=2, U(d)=1
$$

Now we prove that this represents the preferences.

$$
x \succsim y \Leftrightarrow U(x) \geq U(y)
$$

We will do this in class on Thursday.

