1 Indifference Curves - Slope

The slope of an indifference curve measures relatively how much x_2 would the consumer give up to get a little bit of x_1 .

$$u(x_1, x_2) - \bar{u} = 0$$
$$f(x_1, x_2) = 0$$

The slope of an indifference curve is called the **Marginal Rate of Substitution** and is measured by the ratio of partial derivatives:

$$MRS = -\frac{\frac{\partial u}{\partial x_1}}{\frac{\partial u}{\partial x_2}}$$

2 More Preference Assumptions

Lexicographic preferences are complete and transitive yet there is no utility function for them.

2.1 Continuous \succeq .

Preferences are continuous if and only if the upper and lower contour sets are closed. **Continuous** \succeq . A relation \succeq is continuous if and only if $\forall x \in X, \succeq (x) \& \preceq (x)$ are closed in X. **Continuous Representation.** Continuous U exists that represents $\succeq \Leftrightarrow \succeq$ is continuous, complete and transitive.

2.2 U is Ordinal.

Since prefrences are ordinal but we represent them with a cardinal utility function, that utility functions cardinality is meaningless.

Perfect subtitutes prefrences: finn compares bowls of ice cream by counting the number of scoops of ice cream. More is better.

$$(2,2) \succ (1,1)$$

 $u(x_1, x_2) = x_1 + x_2$

$$u(2,2) = 4, u(1,1) = 2$$

This seems to imply that find likes (2,2) two times more that (1,1).

$$\tilde{u}(x_1, x_2) = (x_1 + x_2)^2$$

 $\tilde{u}(x_1, x_2) = x_1 + x_2 + 10$
 $\tilde{u}(x_1, x_2) = \ln(x_1 + x_2)$

This utility function represents the same preferences.

Since $f(u) = u^2$. $\tilde{u}(x_1, x_2) = f(u(x_1, x_2))$ We say u represenst \succeq when $u(x) \ge u(y) \Leftrightarrow x \succeq y$

$$f\left(u\left(x\right)\right)\geq f\left(u\left(y\right)\right)\Leftrightarrow u\left(x\right)\geq u\left(y\right)\Leftrightarrow x\succsim y$$

Any monotonic (increasing function) of a utility function represents the same preferences are the original.

2.3 When is U Cardinal?

Finn preferences for ice cream.

$$(2, 2) \sim (4, 0)$$

$$(1, 1) \sim (2, 0)$$

$$(3, 7) \sim (10, 0)$$

$$u (2, 2) = 4$$

$$u = x_1 x_2$$

$$(2, 3) \sim (z, z)$$

$$(4, 1) \sim (2, 2)$$

$$(1, 1) \sim (1, 1)$$

$$u = (x_1 x_2)^{\frac{1}{2}}$$

$$u (4, 1) = 2$$

 $(4,1) \sim (2,2)$

3 Other Preference Assumption

"Well behaved".

3.1 Monotonicity.

More is better.

(Monotonic) Weak Monotonicity. $x \ge y \Rightarrow x \succeq y$ and if $\forall i, x_i > y_i$ then $x \succ y$.

$$(2,2) \gtrsim (2,1)$$

 $(2,2) \succ (1,1)$
 $(2,1)? (1,2)$

Monotonicity only applies (only has teeth) when comparing bundles where one has weakly more of everything.

$$\begin{split} x \geq y \Leftrightarrow x_i \geq y_i \forall i \\ (2,2) \geq (1,1) \\ (1,1) \geq (1,1) \\ (2,1) \geq (1,1) \\ (1,2)? (2,1) \\ x > y \Leftrightarrow \forall i, x_i \geq y_i \& \exists i, x_i > y_i \\ x >> y \Leftrightarrow x_i > y_i \forall i \end{split}$$

This definition is equivalent to:

Strict Monotonicity. $x \ge y \Rightarrow x \succeq y$ and if $x \ge y$ and there is some *i* such $x_i > y_i$ then $x \succ y$.

$$(2,1) \succ (1,1)$$

Strict monotonicity requires $(2,1) \succ (1,1)$. However, weak monotonicity only implies that $(2,1) \succeq (1,1)$ which allow $(2,1) \stackrel{\sim}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \stackrel{\sim}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow}$

3.1.1 Convexity

Convex Preferences. \succeq is **convex** if $x \succeq x' \Rightarrow t(x) + (1-t)x' \succeq x', t \in [0,1]$. **Strictly convex Preferences:** if $x \succeq x' \Rightarrow t(x) + (1-t)x' \succ x', t \in (0,1)$.

Convexity of Contours. $\succeq (x)$ is convex if and only if \succeq is a convex preference relation. $\succeq (x)$ is strictly convex if and only if \succeq is a strictly convex preference relation

Quasiconvexity of U. If \succeq is represented by U, then \succeq is (strictly) convex if and only if U is (strictly) quasi-concave.

3.1.2 Homotheticity

Homotheticity. $\forall x, y \in X, \forall t \in \mathbb{R}_+ : x \succeq y \Rightarrow tx ty$, **Parallel along rays.** If u is homothetic and differentiable, $\frac{\partial u(x)}{\partial x_i} = \frac{\partial u(tx)}{\partial x_i} = \frac{\partial u(tx)}{\partial x_j}$.