1 Indifference Curves - Slope

The slope of an indifference curve measures relatively how much x_{2} would the consumer give up to get a little bit of x_{1}.

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)-\bar{u}=0 \\
f\left(x_{1}, x_{2}\right)=0
\end{gathered}
$$

The slope of an indifference curve is called the Marginal Rate of Substitution and is measured by the ratio of partial derivatives:

$$
M R S=-\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}
$$

2 More Preference Assumptions

Lexicographic preferences are complete and transitive yet there is no utility function for them.

2.1 Continuous \succsim.

Preferences are continutous if and only if the upper and lower contour sets are closed. Continuous \succsim. A relation \succsim is continuous if and only if $\forall x \in X, \succsim$ $(x) \& \precsim(x)$ are closed in X. Continuous Representation. Continuous U exists that represents $\succsim \Leftrightarrow \succsim$ is continuous, complete and transitive.

$2.2 U$ is Ordinal.

Since prefrences are ordinal but we represent them with a cardinal utility function, that utility functions cardinality is meaningless.
Perfect subtitutes prefrences: finn compares bowls of ice cream by counting the number of scoops of ice cream. More is better.

$$
(2,2) \succ(1,1)
$$

$u\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$

$$
u(2,2)=4, u(1,1)=2
$$

This seems to imply that finn likes $(2,2)$ two times more that $(1,1)$.

$$
\begin{gathered}
\tilde{u}\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2} \\
\tilde{u}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+10 \\
\tilde{u}\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+x_{2}\right)
\end{gathered}
$$

This utility function represents the same preferences.
Since $f(u)=u^{2} . \tilde{u}\left(x_{1}, x_{2}\right)=f\left(u\left(x_{1}, x_{2}\right)\right)$
We say u represenst \succsim when $u(x) \geq u(y) \Leftrightarrow x \succsim y$

$$
f(u(x)) \geq f(u(y)) \Leftrightarrow u(x) \geq u(y) \Leftrightarrow x \succsim y
$$

Any monotonic (increasing function) of a utility function represents the same preferences are the original.

2.3 When is U Cardinal?

Finn preferences for ice cream.

$$
\begin{aligned}
& (2,2) \sim(4,0) \\
& (1,1) \sim(2,0) \\
& (3,7) \sim(10,0) \\
& u(2,2)=4 \\
& u=x_{1} x_{2} \\
& (2,3) \sim(z, z) \\
& (4,1) \sim(2,2) \\
& (1,1) \sim(1,1) \\
& u=\left(x_{1} x_{2}\right)^{\frac{1}{2}} \\
& u(4,1)=2 \\
& (4,1) \sim(2,2)
\end{aligned}
$$

3 Other Preference Assumption

"Well behaved".

3.1 Monotonicity.

More is better.
(Monotonic) Weak Monotonicity. $x \geq y \Rightarrow x \succsim y$ and if $\forall i, x_{i}>y_{i}$ then $x \succ y$.

$$
\begin{aligned}
& (2,2) \succsim(2,1) \\
& (2,2) \succ(1,1)
\end{aligned}
$$

$$
(2,1) ?(1,2)
$$

Monotonicity only applies (only has teeth) when comparing bundles where one has weakly more of everything.

$$
\begin{gathered}
x \geq y \Leftrightarrow x_{i} \geq y_{i} \forall i \\
(2,2) \geq(1,1) \\
(1,1) \geq(1,1) \\
(2,1) \geq(1,1) \\
(1,2) ?(2,1) \\
x>y \Leftrightarrow \forall i, x_{i} \geq y_{i} \& \exists i, x_{i}>y_{i} \\
x \gg y \Leftrightarrow x_{i}>y_{i} \forall i
\end{gathered}
$$

This definition is equivalent to:
Strict Monotonicity. $x \geq y \Rightarrow x \succsim y$ and if $x \geq y$ and there is some i such $x_{i}>y_{i}$ then $x \succ y$.

$$
(2,1) \succ(1,1)
$$

Strict monotonicity requires $(2,1) \succ(1,1)$. However, weak monotonicity only implies that $(2,1) \succcurlyeq(1,1)$ which allow $\left.(2,1)=\sim_{x}^{*}(\underset{\in}{(1,}) B_{\varepsilon}\right)(x) \cap X$ such that $x^{*} \succ x$. This ensures the consumer will always consumer on the boundary of the budget set.

3.1.1 Convexity

Convex Preferences. \succsim is convex if $x \succsim x^{\prime} \Rightarrow t(x)+(1-t) x^{\prime} \succsim x^{\prime}, t \in[0,1]$. Strictly convex Preferences: if $x \succsim x^{\prime} \Rightarrow t(x)+(1-t) x^{\prime} \succ x^{\prime}, t \in(0,1)$.

Convexity of Contours. $\succsim(x)$ is convex if and only if \succsim is a convex preference relation. $\succsim(x)$ is strictly convex if and only if \succsim is a strictly convex preference relation
Quasiconvexity of U. If \succsim is represented by U, then \succsim is (strictly) convex if and only if U is (strictly) quasi-concave.

3.1.2 Homotheticity

Homotheticity. $\forall x, y \in X, \forall t \in \mathbb{R}_{+}: x \succsim y \Rightarrow t x \succsim t y$, . Parallel along rays. If u is homothetic and differentiable, $\frac{\frac{\partial u(x)}{\partial x_{i}}}{\frac{\partial u(x)}{\partial x_{j}}}=\frac{\frac{\partial u(t x)}{\partial x_{i}}}{\frac{\partial u(t x)}{\partial x_{j}}}$.

