1 Homotheticity

$x \succsim y \Rightarrow t x \succsim t y$ for all $t \geq 0$.
A (smooth) utility function is homothetic if and only if the indifference curves are parallel along a rays through the origin.

$$
\begin{gathered}
M R S(x)=M R S(t x) \\
-\frac{\frac{\partial\left(u\left(x_{1}, x_{2}\right)\right)}{\partial x_{1}}}{\frac{\partial\left(u\left(x_{1}, x_{2}\right)\right)}{\partial x_{2}}}=-\frac{\frac{\partial\left(u\left(t x_{1}, t x_{2}\right)\right)}{\partial x_{1}}}{\frac{\partial\left(u\left(t x_{1}, t x_{2}\right)\right)}{\partial x_{2}}}
\end{gathered}
$$

$u\left(x_{1}, x_{2}\right)$

$$
\begin{gathered}
u\left(2 x_{1}, 2 x_{2}\right)=u\left(x_{1}, x_{2}\right) \\
x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}} \\
-\frac{\frac{\partial\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)}{\partial x_{1}}}{\frac{\partial\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)}{\partial x_{2}}}=-\frac{x_{2}}{x_{1}} \\
M R S\left(2 x_{1}, 2 x_{2}\right)=-\frac{2 x_{2}}{2 x_{1}}=-\frac{x_{2}}{x_{1}}
\end{gathered}
$$

Since the MRS only depends on the ratio of x_{1} and x_{2}, the utility function is homothetic.

$$
u\left(t x_{1}, t x_{2}\right)=\left(t x_{1}\right)^{\frac{1}{2}}\left(t x_{2}\right)^{\frac{1}{2}}=t^{\frac{1}{2}} t^{\frac{1}{2}}\left(x_{1}\right)^{\frac{1}{2}}\left(x_{2}\right)^{\frac{1}{2}}=t\left(x_{1}\right)^{\frac{1}{2}}\left(x_{2}\right)^{\frac{1}{2}}=t u\left(x_{1}, x_{2}\right)
$$

Here is another utility function with the same preferences but that has increasing returns to scale:

$$
x_{1} x_{2}
$$

Because Homotheticity is a property of the preferences and not the utility function, it is an ordinal property and it is invariant to increasing transformations of the utility function.

2 Example

Suppose: $X=\{(2,0),(0,2),(4,0),(0,4),(1,1),(2,2)\}$.
Suppose preferences are anti-symmetric $(x \sim x)$ but for all other pairs of distinct bundles either $(x \succ y)$ or $(y \succ x)$ and complete and transitive.

1. What can assume about \succ if preferences are weakly monotonic?

$$
(2,2) \succ(1,1)
$$

1. What can assume about \succ if preferences are strictly monotonic?

Suppose: $X=\{(2,0),(0,2),(4,0),(0,4),(1,1),(2,2)\}$.

$$
(2,2) \succ(1,1),(4,0) \succ(2,0),(0,4) \succ(0,2),(2,2) \succ(0,2),(2,2) \succ(2,0)
$$

2. Suppose $(2,0) \succ(0,2)$ and preferences are convex. What can we infer?

$$
(1,1) \succ(0,2)
$$

Suppose we assume preferences are weakly monotonic, convex, anti-symmetric, complete and transitive and that $(2,0) \succ(0,2)$.

$$
(2,2) \succ(1,1) \succ(0,2)
$$

By transitivity we can infer $(2,2) \succ(0,2)$. This preference is not ensured by weak monotonicity, we need to leverage the convexity and transitivity to get it. 3. Suppose we observe that $(2,0)$ is the choice from the set $\{(2,0),(1,1),(0,2)\}$ and preferences are complete, anti-symmetric, strictly monotonic, convex, and homothetic. What can we infer?

From monotonicity:

$$
(2,2) \succ(1,1),(4,0) \succ(2,0),(0,4) \succ(0,2),(2,2) \succ(0,2),(2,2) \succ(2,0)
$$

From the choice of $(2,0)$:

$$
(2,0) \succ(1,1),(2,0) \succ(0,2)
$$

From this and convexity:

$$
(2,0) \succ(1,1) \succ(0,2)
$$

From homotheticity:

$$
(4,0) \succ(2,2) \succ(0,4)
$$

What are the possible preference orderings?
This is impossible:

$$
\begin{aligned}
& (2,0) \succ(1,1) \succ(0,2) \\
& (4,0) \succ(2,2) \succ(0,4)
\end{aligned}
$$

By strict monotonicity: $(2,2) \succ(2,0)$. Thus, $(4,0) \succ(2,2)$ have to be at the top of the ordering. Where can $(0,4)$ be? It has be be above $(0,2)$ but we don't know how it compares to $(1,1)$ or $(2,0)$. This gives the follow possibilities:

$$
\begin{aligned}
& (4,0) \succ(2,2) \succ(0,4) \succ(2,0) \succ(1,1) \succ(0,2) \\
& (4,0) \succ(2,2) \succ(2,0) \succ(0,4) \succ(1,1) \succ(0,2) \\
& (4,0) \succ(2,2) \succ(2,0) \succ(1,1) \succ(0,4) \succ(0,2)
\end{aligned}
$$

If we observe choice from $\{(0,4),(1,1)\}$ and $\{(0,4),(2,0)\}$ we will know the entire rank ordering.

3 Constrained Optimization - Some Intuition

$\operatorname{Max} \mathrm{u}\left(x_{1}, x_{2}\right)$ subject to $p_{1} x_{1}+p_{2} x_{2} \leq m$

$$
u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)
$$

