1 The Consumer Problem / Constrained Optimization

1.1 The Lagrange Method - Some Intuition

On Board

1.2 Dual Problem - Some Intuition

On Board

1.3 The Consumer Problems

```
Consumer's Constrained Maximization Problem
Maximize utility subject to the constraint p}\mp@subsup{p}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{p}{2}{}\mp@subsup{x}{2}{}+\ldots+\mp@subsup{p}{n}{}\mp@subsup{x}{n}{}\leqm\mathrm{ .
Consumer's Constrained Minimization Problem
Minimize }\mp@subsup{p}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{p}{2}{}\mp@subsup{x}{2}{}+\ldots+\mp@subsup{p}{n}{}\mp@subsup{x}{n}{}\mathrm{ subject to }u(x)\geq\overline{u
```

By strong duality, if \bar{u} is the maximum utility that can be achieved with income m then m will be the minimum amount to spend to achieve utility u and the bundle that maximizes utility also minimizes cost of achieving that utility.

1.4 Example

Maximize $u=x_{1} x_{2}$

$$
\begin{gathered}
x_{1} x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right) \\
\frac{\partial\left(x_{1} x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)\right)}{\partial x_{1}}=0 \\
\frac{\partial\left(x_{1} x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)\right)}{\partial x_{2}}=0
\end{gathered}
$$

Complementary slackness

$$
\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)=0
$$

Either the constraint doesn't mind and lambda is zero
Or the constraint binds and lambda is ≥ 0
Or both.
We know the constraint is going to bind.

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

We now have three conditions:

$$
\begin{aligned}
& \frac{\partial\left(x_{1} x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)\right)}{\partial x_{1}}=0 \\
& \frac{\partial\left(x_{1} x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)\right)}{\partial x_{2}}=0 \\
& p_{1} x_{1}+p_{2} x_{2}=m
\end{aligned}
$$

Solve the derivatives

$$
\begin{gathered}
x_{2}=\lambda p_{1} \\
x_{1}=\lambda p_{2} \\
p_{1} x_{1}+p_{2} x_{2}=m
\end{gathered}
$$

Eliminate λ from the first two:

$$
\begin{gathered}
x_{2} p_{2}=x_{1} p_{1} \\
x_{1}=\frac{\frac{1}{2} m}{p_{1}} \\
x_{2}=\frac{\frac{1}{2} m}{p_{2}} \\
\frac{\frac{1}{2} m}{p_{1} p_{2}}=\lambda
\end{gathered}
$$

Lambda will always be the amount of extra utility I get per dollar I spend on any good at the optimum.
The extra utility I get per dollar is $\frac{\frac{1}{2} m}{p_{1} p_{2}}$
"The shadow value"
Optimal bundle:

$$
x_{1}=\frac{\frac{1}{2} m}{p_{1}}, x_{2}=\frac{\frac{1}{2} m}{p_{2}}
$$

1.5 Properties of Indirect Utility

1. Continuous.
2. Homogeneous of degree zero in prices and income.
3. Strictly increasing in y and weakly decreasing in p.
4. Quasi-convex in (p, y).
5. Roy's Identity. $-\frac{\frac{\partial V}{\partial p_{i}}}{\frac{\partial V}{\partial m}}=x_{i}^{*}$ (An envelope condition.)

1.6 Example - Cost Min

$x_{1} x_{2}$

1.7 Properties of Expenditure Function

For U that is continuous and strictly increasing, the Expenditure Function e has the following properties:

1. Continuous.
2. For $p \gg 0$, strictly increasing and unbounded above in u.
3. Increasing in p.
4. Homogeneous of degree 1 in p.
5. Concave in p.
6. Shephard's lemma. When x_{i}^{h} is single valued, $-\frac{\partial e}{\partial p_{i}}=x_{i}^{h}$

1.8 Properties of Demand

1.8.1 Slutsky Equation

1.8.2 Slutsky Equation: $\frac{\partial\left(x_{i}(p, y)\right)}{\partial p_{j}}=\frac{\partial\left(x_{i}^{h}(p, \bar{u})\right)}{\partial p_{j}}-\frac{\partial\left(x_{i}(p, y)\right)}{\partial y} x_{j}^{h}$.

1.8.3 Negative Own-Substitution Effects

1.8.4 Elasticity

