Linear Extension Poset is a "Partially Ordered Set", Partial Order Poset, Partial Order: \succeq reflexive, anti-symmetric, transitive Linear Order: \succeq reflexive, anti-symmetric, transitive, **complete** A linear extension \succeq_L is a Linear Order that is *consistent* with a partial order \succeq . $\succeq \subseteq \succeq_L$ Partial order: $\succeq = \{(a, a), (b, b), (c, c), (a, b)\}$ Linear order: $\succeq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ Linear order: $\succeq = \{(a, a), (b, b), (c, c), (a, b), (c, b), (a, c)\}$

1 From Preferences to Choice

Choice Function.

A selection from every budget set. $\mathscr{B} = P(X) / \emptyset$ $C : \mathscr{B} \to \mathscr{B}$ such that $C(B) \subseteq B$. **Finite Non-Emptyness:** For every finite $B \in \mathscr{B}$, $C(B) \neq \emptyset$. $C(\{a,b\}) = \{a\}, C(\{a,b,c\}) = \{b\}$

Coherence:

For all x, y and B, B' such that $x, y \in B, B'$. $x \in C(B) \land y \notin C(B) \Rightarrow y \notin C(B')$

 $C\left(\left\{a,b\right\}\right)=\left\{a,b\right\},C\left(\left\{a,b,c\right\}\right)=\left\{b\right\}$

Choice Function Induced By \succeq

For $B \in \mathscr{B}$, $C_{\succeq}(B) = \{x | x \in B \land \forall y \in B, x \succeq y\}$ "The choice from B are all the of the objects in B that are a at least as good as every other object in B"

Example:

 $\begin{array}{l} \mbox{Linear order: $$\succeq=$ {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}$} \\ C({a}) = {a}, C({a, b}) = {a}, C({a, b, c}) = {a}$ \\ \mbox{Weak Order: $$\succeq=$ {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (a, c)}$} \\ C({a}) = {a}, C({a, b}) = {a, b}$ \\ \mbox{Intransitive Order: $$\succeq=$ {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)}$ \\ \mbox{This has a cycle of strict preferences $a > b > c > a$ \\ C({a}) = {a}, C({a, b}) = {a}, C({a, b}) = {a}, C({a, b, c}) = \emptyset \\ \end{array}$

Proposition 1. For a Finite X and complete \succeq , Existence of an Empty Choice Is \Leftrightarrow to a Cycle in \succ

Cycle in \succ implies empty choice.

The existence of a cycles implies there is some set of bundles $x_1, ..., x_n \ x_1 \succ x_2 \succ ... \succ x_{n-1} \succ x_n \succ x_1$.

To show there is an empty choice, take $B = \{x_1, ..., x_n\}$

We need to show that for every $x_i \in B$ there is some $x_j \neq x_i$ such that $\neg (x_i \succeq x_j)$.

For i > 1, an x_j meeting this condition is x_{i-1} is such a bundle. Since $x_{i-1} \succ x_i$ by assumption, and $x_{i-1} \succ x_i$ implies $\neg (x_i \succeq x_{i-1})$ this condition is met for all i > 1.

For i = 1, note that $x_n \succ x_1$ which implies that $\neg (x_1 \succeq x_n)$ (This relies on the fact that B is a loop).

For every $x_i \in B$, there is some bundle that x_i is not at least as good as.

Let's prove the other direction:

If there is an empty choice, then there is a cycle in \succ .

If there is an empty choice then there is some budget B such that $C(B) = \emptyset$.

For such a set, $\#(B) \ge 3$ because preferences are complete.

Choose any object in *B*. Call it x_1 . Since x_1 in not in C(B) and \succeq is complete, there must be some $x_2 \in B$ such that $x_2 \succ x_1$. Now x_2 do the same exercise to find some $x_3 \succ x_2$. Continue to find some object better than x_3 . If that is x_1 we have found a cycle. Otherwise continue.

Continue until we have constructed a chain $x_n \succ x_{n-1} \succ \dots \succ x_1$. There must be something better than x_n , and that that thing has to already appear in the chain.

If there is not a cycle, there is not an empty choice.