harmonic.

A consumer has utility function:

$$U(x) = \frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$$

part 1.

a) Does this consumer have homothetic preferences? Justify your answer.

b) Find the Marshallian demands for this consumer.

c) Say something interesting in *less than 100 words* about how this consumer's behavior compares to one with $U(x) = x_1x_2$.

bonus^{*}) Say something interesting in *6 words* about how this consumer's behavior compares to one with $U(x) = x_1 x_2$.

part 2.

a) Find the expenditure function for the consumer.

b) Find the Hicksian demand for the consumer using Shephard's Lemma.

c) Find the income and substitution effect for a change in p_1 on x_1 in terms of p_1, p_2, m .

northweferences.

Kim and Kanye both have complete, transitive, convex preferences on the convex feasible set X. North, *their child*, prefers bundle x to y if and only if both Kanye and Kim do. That is:

 $x \succeq_{\scriptscriptstyle North} y \iff x \succeq_{\scriptscriptstyle Kanye} y \ and \ x \succeq_{\scriptscriptstyle Kim} y$

a) Is \succeq_{North} necessarily transitive? Justify your answer.

b) Is \succeq_{North} necessarily convex? Justify your answer.

c) \succeq_{North} is complete, what can you infer about \succeq_{Kanye} and \succeq_{Kim} .

^{*}Bonus awarded in glory, not points.

quasience.

A consumer has utility function:

$$U(x) = (x_1)^{\frac{1}{2}} (x_2)^{\frac{1}{2}} + \ln(x_3)$$

She decides to budget her income m such that:

$$m = m_{1,2} + m_3$$

$$m_{1,2} \ge p_1 x_1 + p_2 x_2.$$

$$m_3 \ge p_3 x_3$$

a) Find the optimal x_1 and x_2 as functions of $p_{1,p_2}, m_{1,2}$.

b) Write down a quasi-value function $\tilde{V}(p_1, p_2, p_3, m, m_{1,2})$. *i.e.* write down the consumers maximized utility level conditional only on the parameters p_1, p_2, p_3, m and her choice of $m_{1,2}$.

c) Prove that this quasi-value function is quasi-concave in $m_{1,2}$.

d) Find the optimal $m_{1,2}$ and m_3 .

e) Write down the Mashallian demands for x_1, x_2, x_3 .

f) Why is this consumer able to optimize x_1 and x_2 given $m_{1,2}$ without concern for the level of x_3 ?