A traveler lives in a convex cone. Coordinates in her world are given by points (x_1, x_2) . She lives at (0,0). There is a particularly nice spot to visit located at (2,2). At the moment, she is able to travel in any straight line including diagonals. Because of this, her travel distance to a point is simply its Euclidean distance $\sqrt{x_1^2 + x_2^2}$. Her preferences can be represented by 100 minus the **square** of her distance to (2,2) and minus the distance she had to travel to get to the point she visits. Thus her utility can be written:

$$U(x_1, x_2) = 100 - (2 - x_1)^2 - (2 - x_2)^2 - \sqrt{x_1^2 + x_2^2}$$

- A) Argue that $x_1 = x_2$ at the optimum.
- **B)** What point does she visit?
- C) If the government outlaws traveling on a diagonal so she can only move eastwest or north-south, how does her behavior change?

Kevin is a musician. He produces hit tracks using a rented studio space s, creativityenhancing drinks d, and hourly help from a song-writing assistant a. Kevin's continuous, strictly concave, and strictly monotonic production function is f(s, d, a). Kevin's goal is to minimize the cost of producing at least 4 hit tracks since that is what his label demands. In additional, Kevin has a contract with his song-writing assistant and must use at least 10 hours of help.

Kevin faces a constrained cost minimization. Using a Lagrange multiplier approach, Kevin forms the Lagrangian function.

$$p_{s}s + p_{d}d + p_{a}a + \lambda (4 - f(s, d, a)) + \mu (10 - a)$$

- A) Suppose Kevin would use less than 10 hours of his assistant's time if he could. Give an interpretation for the value of μ .
- B) Derive an expression for the value of λ at the optimum and give an interpretation of its value assuming $\mu = 0$.
- C) Drive an expression for how Kevin's minimized cost of producing four hits changes as the price of drinks changes.

A individual consumes bundles in \mathbb{R}^2_+ and has a preference relation \succeq on these bundles that can be represented by the utility function $U(x_1, x_2) = 2ln\left(x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}\right)$.

- A) State what it means for a consumer's preferences to be *homothetic* in terms of their preference relation.
- **B**) Prove this consumer has homothetic preferences.
- C) Find the Marshallian Demand for each good.
- **D**) Confirm Roy's Identity.
- E) What is the elasticity of substitution for the consumer? Interpret this number.
- **F)** How does this consumer's demand compare to a consumer with the utility $U(x_1, x_2) = \left(x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}\right)^2$.