1. A firm has production function $f\left(x_{1}, x_{2}\right)=\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)^{-\frac{1}{2}}$. The input prices for x_{1} and x_{2} are $w_{1}=4$ and $w_{2}=1$.
A) Show this function is increasing in x_{i} for $x_{1}>0, x_{2}>0$.

$$
\frac{\partial\left(\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)^{-\frac{1}{2}}\right)}{\partial x_{1}}=\frac{1}{2 x_{1}^{2}\left(\frac{1}{x_{2}}+\frac{1}{x_{1}}\right)^{3 / 2}}
$$

Since $x_{1}, x_{2}>0$, the denominator is strictly positive.
B) What is the degree of homogeneity for this function?

$$
\frac{1}{2}
$$

C) What are the firm's conditional factor demands?

$$
\begin{aligned}
& x_{2}=3 y^{2} \\
& x_{1}=\frac{3}{2} y^{2}
\end{aligned}
$$

D) What is the firm's cost function.

$$
9 y^{2}
$$

E) How much output does a monopolist produce? What does it charge?

$$
y=\frac{100}{20}=
$$

F) How much does each firm produce in Cournot oligopoly with N firms?

$$
\begin{gathered}
\frac{\partial\left(\left(100-q_{i}-q_{-i}\right) q_{i}-9 q_{i}^{2}\right)}{\partial q_{i}}=100-q_{-i}==20 q_{i} \\
y_{i}=\frac{100}{N+19}
\end{gathered}
$$

G) The government really wants to have 81 firms in this market for some reason. They decide to charge a license fee F to any firm operating in the market. What is an amount F the government can set so that 81 firms enter the market?

$$
F=10
$$

2. A consumer has utility function $u=\ln \left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)+x_{3}$ and income m. Prices are p_{1}, p_{2}, p_{3}. Assume $p_{3}=1$ throughout the problem.

$$
\begin{gathered}
\frac{\partial\left(\log \left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)+x_{3}-\lambda\left(x_{1} p_{1}+x_{2} p_{2}+x_{3}-m\right)\right)}{\partial x_{1}}=\frac{1}{2 x_{1}}-\lambda p_{1} \\
\frac{\partial\left(\log \left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)+x_{3}-\lambda\left(x_{1} p_{1}+x_{2} p_{2}+x_{3}-m\right)\right)}{\partial x_{2}}=\frac{1}{2 x_{2}}-\lambda p_{2} \\
\frac{\partial\left(\log \left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}}\right)+x_{3}-\lambda\left(x_{1} p_{1}+x_{2} p_{2}+x_{3}-m\right)\right)}{\partial x_{3}}=1-\lambda
\end{gathered}
$$

If $m>1$

$$
\begin{gathered}
\frac{1}{2 p_{1}}=x_{1} \\
\frac{1}{2 p_{2}}=x_{2} \\
x_{3}=m-1
\end{gathered}
$$

If $m<1$

$$
\begin{aligned}
& x_{1}=\frac{\frac{1}{2} m}{p_{1}} \\
& x_{2}=\frac{\frac{1}{2} m}{p_{2}}
\end{aligned}
$$

A) Show that this function is concave. Do this however you'd like.
B) Set up the Lagrangian from which the unconstrained maximum gives the consumer's constrained utility maximum. Use λ for the multiplier.
C) Using the derivatives of the Lagrangian, argue that: If the consumer is optimizing and consumes some of each good, the consumer's marginal utility for money is 1 .
D) What are this consumer's demands for x_{1}, x_{2} and x_{3} ? Account for any corner solutions.
E) For what range of income will the consumer choose positive x_{1} ? What about x_{2} ? What about x_{3} ?
F) Write the consumer's value function for the range of income where demand is strictly positive for all goods.
G) Using duality, write the consumer's expenditure function for the range of utilities where the consumer demands positive amounts of both goods.
H) What is the consumer's Hicksian demand for x_{1} when utility is such that all goods are demanded?
3. \succsim is a binary relation that is complete and transitive on some finite set X. Let \succ be defined as follows: $x \succ y \Leftrightarrow x \succsim y$ and not $y \succsim x$. Show that $x \succ y$ and $y \succsim z$ implies $x \succ z$.
We need to prove not $z \succsim x$. Suppose otherwise.
$y \succsim z, z \succsim x$ implies $y \succsim x$ which is contradictory

