1. In a 2013 paper, Eugenia Cheng derived the formula for the ratio of topping to dough in the median bite of a pizza of radius r. Where t is the volume of topping and d is the volume of dough, this ratio is ${ }^{1}$:

$$
\rho=\frac{t}{d} \frac{r^{6}}{\left(r^{3}-8\right)^{2}}
$$

This formula assumes a pizza bigger than 2 inches in radius, so assume $r>2$ for the rest of this problem. Further, because your oven has a limited size, the biggest pizza possible is $r=100$.
Total pizza volume is $v=t+d$ where t and d are measured in cups. Suppose your utility over pizzas (ρ, v) is:

$$
u(v, \rho)=v\left(1-\left(\frac{243}{676}-\rho\right)^{2}\right)
$$

A) Show ρ is quasi-convex in r for $r>2$.
B) Suppose you have to make a pizza consisting of one cup of toppings $t=1$ and three cups of dough $d=3$. What is the size of the optimal pizza?
C) Suppose you have to make a pizza consisting of one cups of topping $t=1$ and two cups of dough, $d=2$. What is the size of the optimal pizza?
2. You are running an experiment to learn about preferences on the set $X=$ $\{(2,0),(0,2),(4,0),(0,4),(1,1),(2,2)\}$. You assume preferences are reflexive, complete, transitive, and anti-symmetric (recall that this means all preferences are strict on distinct bundles).
A) If you assume preferences are also strictly monotonic, what can you infer about \succ on X without observing any choices?
In your experiment, you first ask the subject to choose a bundle from the set $\{(2,0),(0,2),(1,1)\}$.
B) If you assume preferences are also convex and strictly monotonic and you observe a subject choose $(2,0)$ from the set $\{(2,0),(0,2),(1,1)\}$, what can you infer about \succ ?
C) If you assume preferences are also homothetic, convex and strictly monotonic and you observe a subject choose $(2,0)$ from the set $\{(2,0),(0,2),(1,1)\}$, what can you infer about \succ ?
D) What are two additional sets can you ask this subject (from part ch) to choose from so that you will be able to infer their entire rank ordering?

[^0]3. A consumer has utility function $u=\left(x_{1}+1\right)\left(x_{2}+1\right)$ and income m. Prices are p_{1}, p_{2}. For each part, account for corner solutions.
A) Show that u is quasi-concave.
B) What is the consumer's Marshallian demand?
C) What is the consumer's elasticity of demand for x_{1} ?
D) What is the consumer's Hicksian demand?

[^0]: ${ }^{1}$ I have adjusted this formula slightly for the problem.

