1.A. To show the function is quasi-convex, it is sufficient to show it is mono-
tonic. This is the case for r > 2.
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1.B. Notice that the utility is decreasing in the square of the term % —

%ﬁ and this term can be made zero, which is necessary (and sufficient) for

maximization.
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1.C. Now the relevant cannot be made to be zero since %ﬁ is always

larger than % Instead, we need to minimize this term:
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Looking for where this is stationary will fail. That’s because it is decreasing
above r > 2. So, the optimal is just to choose the largest r possible r = 100

2.A. We get a lot from strict monotonicity here. (4,0) > (2,0),(0,4) >~
(0,2),(2,2) = (1,1),(2,2) = (0,2),(2,2) = (2,0).

2.B. From the choice, we can infer that (2,0) > (0,2) and (2,0) > (1,1). In
addition to these and the inferences from monotonicity, we can now also infer
(1,1) > (0,2) by convexity.

2.C. By Homotheticity, we can additionally infer that (4,0) > (0,4), (4,0) =~
(2,2),(2,2) = (0,4)

2.D. At this point the only comparison that is left is {(0,4),(2,0)} and
{(0,4),(1, 1)}

3.A. (1.1 + 1) (1.2 + 1) — e(ln((w1+1)(w2+1))) _ eln(w1+1)+ln(a:2+1) this is a
monotonic transformation of In (x1 + 1) +In (22 + 1) which is a sum of concave
functions and thus concave. Since (z1 + 1) (22 + 1) is a monotonic transforma-
tion of this, it is quasi-concave.



3.B. z; = mffgjm?;vz = mg’;g” if m > py —p1 and m > p; — ps.
Notice that m has to be greater than at least one of m > ps — p; and
m > p1 — po. But if either fails, we hit a corner.
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3.D.
$1=w,xzzwif1t2% anduzg—;. Notice that v > 1

for any (x1,22). Thus, only one of the two of these can fail.
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