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1. Introduction

Students in New York City who want to attend one of the City’s most prestigious

high schools such as Stuyvesant or Bronx Science must take the Specialized High School

Admissions Test. The results of this test influence the placements by determining stu-

dents’ priorities in the subsequent mechanism that assigns students to schools. Students

who score higher on the placement exam receive higher priority in the procedure, and a

higher priority tends to yield a seat in a more preferred school. Since these schools use

a sequential dictator mechanism, the top-scoring student receives her top choice. The

100th best scorer only receives a seat in her most favored school among those that the

99th best scorers have not yet filled (Dobbie and Roland G. Fryer, 2011).

In other places, like Boston, students gain priority based on several criteria, such as

whether the student lives within walking distance to the school (Abdulkadiroğlu et al.,

2005b). This implies that students compete for access to better schools, in part, by

relocating near their favorite schools, as evidenced by the effect of school quality on

house prices (Crone, 1998; Downes and Zabel, 2002; Leech and Campos, 2003; Reback,

2005; Gibbons and Machin, 2008). Again, higher priorities in better schools are useful

only as far as the assignment mechanism uses these priorities. For example, Boston

changed its school choice mechanism in 2005 to deferred acceptance (DA) which gives

substantial importance to priority. This contrasts with the previous use of the immediate

acceptance (IA) mechanism where priority plays a lesser role.

The matching mechanism itself is an essential component in the overall assignment

process. The matching literature has made significant progress in analyzing the prop-

erties of mechanisms. Abdulkadiroglu and Sönmez (2003) and Pathak (2011) provide a

review of results in school choice.1 Famously, these results led to the redesign mentioned

above for the assignment procedure in Boston and the redesign of the broader New York

Public School assignment procedures in 2003 (Abdulkadiroğlu et al., 2005). Researchers

generally analyze mechanisms by assuming that the priorities are fixed and exogenous.

In this paper, we emphasize that the interaction between the matching mechanism and

the “game” through which priorities are determined can be an important consideration,

in particular for the overall efficiency of the assignment procedure.

To illustrate the importance of this interaction, suppose that a school district allocates

some proportion of its seats through an algorithm based on priority and allocates the

remaining seats “at random” (in a way that is independent of priorities).2 Further,

suppose that priorities at a school are a continuous function of the distance a student

lives from the school. This is the case, for example, in the French-speaking region of

1See Sönmez and Ünver (2011) for a broader overview.
2In practice, it is common for school districts to allocate different layers of seats — or seats at different
schools — through different mechanisms. Examples include New York City, which uses a different
mechanism for elite high schools than for the remaining high schools in the district (Abdulkadiroğlu
et al., 2005a; Dobbie and Roland G. Fryer, 2011).
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Belgium, where one of the factors affecting priority is the distance between one’s residence

and the school at stake (Cantillon, 2015). As the proportion of seats allocated based on

priority increases, incentives to relocate closer to one’s favorite schools increase.3 However,

relocation may imply choosing a house and a neighborhood that would not be optimal

without this priority consideration. Thus, to the extent that the resulting relocation is

wasteful, welfare could be negatively affected by an increase in the proportion of seats

allocated based on priority.

Of course, the overall efficiency picture is more complicated. In particular, the effect

of a change in mechanism on the wasteful competition for priorities must be weighed

against the possible gains in allocative efficiency brought about by that change.4 To

study overall efficiency, we embed a simplified matching environment into a two-stage

game with a first-round contest for priority (the “effort stage”). This allows us to formally

analyze the effect of changes to the matching mechanism on overall efficiency by including

interactions between the mechanism and preliminary effort.

This approach yields important insights. We show that efficiency improvements at the

level of the mechanism can lead to net efficiency losses through increased competition

in the effort stage (by “net” efficiency, we mean efficiency at the level of the procedure

as a whole, including the effort stage). All else equal, net efficiency increases with the

efficiency of the mechanism, but decreases with its allocative inequality because increases

in the latter induce fiercer competition and more wasteful effort, at the level of the effort

stage. The reduction of allocative inequality at the level of the mechanism can therefore

be justified by net efficiency considerations. Improvements in allocative efficiency can also

have a detrimental effect on net efficiency if they come at the price of increased allocative

inequalities. In the context of our simplified matching environment, this implies that

even when DA is more allocatively efficient than IA, the latter may remain more efficient

overall because it features less inequality between students with high- and low-priority

(in equilibrium).

Although our results apply specifically to school choice and the IA and DA mecha-

nisms, they point, more broadly, to the importance of considering matching mechanisms

in a general equilibrium setting when costly effort is involved in influencing potential

outcomes.

3Reback (2005) show empirically that a change in the public school assignment procedure in Minnesota
in the early 1990s (namely the adoption of a public school choice program) led to significant changes in
home prices. Priority access to schools caused these price movements.
4In the above example, if increasing x also makes the allocation of seats more efficient, this increase in
efficiency may overwhelm the decrease in efficiency caused by fiercer competition for priorities.
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1.1. Related literature. Our paper is the first, to our knowledge, to consider the effect

of a matching mechanism on the incentives for players to compete for priority. However,

several papers are related in terms of our general approach.5

Hatfield et al. (2018) considers a general matching / allocation environment in which

players make investment decisions that impact their valuations at the matching stage

(with potential uncertainty about the impact of investment). As in our paper, the authors

consider the effect of the matching mechanism on overall efficiency, including prematching

investment. They show that a mechanism incentivizes efficient investment if and only

if it is allocatively efficient and strategy-proof, generalizing previous results of Rogerson

(1992) and Bergemann and Välimäki (2002). In Section 4.2, we also consider the case

where a player’s investments affect their preferences. However, in contrast to Hatfield

et al. (2018) we do not allow transfers, and the investments of our players affect how the

allocation mechanism treats them.

The role of investments in Hsu (2016) mirrors our approach. There, students are en-

dowed with an allotment of time to devote to studying various topics. These investments

determine a student’s priority in the matching stage, but not their valuation. In contrast

to our paper, Hsu (2016) analyzes the effect of the choice of mechanism on the incentives

for students to spend time on topics for which they have a particular talent or pursue a

diversity of abilities. We focus on a more traditional welfare analysis.

Hatfield et al. (2016) is closely related in theme to our work, but takes a different

approach to analyze competition. In their model, investments by schools affect students’

preferences. However, instead of studying the welfare effect of investments as we do, they

introduce an ordinal criterion that implies that schools have an incentive to invest in

improvements. They show that, in large school districts, this condition is approximately

met when the matching mechanism is stable.

Avery and Pathak (2021) study the interaction between school choice and the housing

market. Similarly to our results, they demonstrate that the improvements of a mechanism

may be undermined through distortions of incentives at an earlier stage. Although school

choice is intended to improve the availability of high-quality schools, in their model,

introducing school choice causes changes in housing prices that lead both high- and low-

income families to move out of districts with school choice. This “flight” can produce

worse outcomes for low-income families.

A final related paper is Zhang (2020), which demonstrates that stable two-sided match-

ing mechanisms can induce players to engage in risky gambles for desirable characteristics

in a prematching stage.

1.2. Paper structure. Our paper is structured as follows. In Section 2, we describe

our model and provide details of the matching environment and the prematching effort

5Students’ behavior in our model, which leads to decreases in net welfare despite improvements to the
allocation of schools, which is a specific case of rent-seeking. See, for instance, Tullock (1967); Krueger
(1974); Buchanan et al. (1980); Tullock et al. (1993); Congleton et al. (2008); Tollison (2012).
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stage. In Section 3, we demonstrate that the effort stage constitutes a generic all-pay

contest and leverage the results of Siegel (2009) to derive comparative statics which

relate properties of the matching mechanism to overall welfare in the equilibrium of the

two-stage effort/matching game. In Section 4 we use these results to study the overall

efficiency of popular school choice mechanisms such as deferred acceptance and immediate

acceptance under various conditions. We conclude with a discussion of our results and

potential extensions in section 5.

2. Model

Our model is split into two main stages. In the effort stage, students compete for

priorities in a contest. In the second stage, these priorities are used in a school choice

mechanism to determine seats at schools. The timing of our model is as follows. Students

first compete in a contest by simultaneously choosing effort under common knowledge of

effort costs. Students then learn their rank in the contest and how these ranks translate

into priorities at schools. Students also learn their cardinal preferences over schools (but

not the cardinal utility of other students) before reporting ordinal preferences over schools

in the second-stage school choice mechanism. We discuss some aspects of the timing and

information structure in more detail in section 2.3. Since the effort stage’s incentives

depend on the matching mechanism’s potential outcomes, it is convenient to describe the

matching stage first.

2.1. Matching stage. The model of the matching stage is similar to Abdulkadiroğlu

et al. (2011). There arem ≥ 2 schools, S := {s1, . . . , sm} with the index setA := {1, . . . ,m}.
School sa ∈ S has capacity qa > 0. Departing from Abdulkadiroğlu et al. (2011), we di-

vide the schools into two groups. The set of “high-quality” schools is Sh := {s1, . . . , sg}
for some g ∈ {1, . . . ,m− 1} and the set of “low-quality” schools is Sℓ := {sg+1, . . . , sm}.
Schools in S can be attended by n ≥ 2 students. Among these students, h have a

high priority type which results in a high-priority at schools s1 to sg (these are the h

students who exert the highest effort in the initial contest stage, see below).6 Priorities are

otherwise determined via a symmetric tie-breaking rule.7 This simple priority structure

can be viewed as an approximation of school districts where only a few strict priorities

are awarded (e.g., based on whether a student lives in the “walking zone” of a school)

with ties otherwise broken at random, which is common in practice. Throughout, we

assume that
∑

a∈{1,...,g} qa = h and
∑

a∈{g+1,...,m} qa = ℓ. That is, the total capacity of

6Slightly abusing the notation, we use ℓ and h to denote both the priority types themselves (low or high)
and the number of students of a certain priority type (ℓ low-priority types and h high-priority types).
7This means the h high-priority types always have a higher priority at the g high-quality schools than
the ℓ low-priority types. Priorities at high-quality schools among the h high-priority types and the ℓ
low-priority types are determined symmetrically at random (where “symmetrically” we mean that each
student has the same probability of occupying any priority rank at a high-quality school than any other
student of her priority type). Priorities in low-quality schools are also determined symmetrically at
random but among all students, low- and high-priority types alike.
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high-quality schools is equal to the number of high-priority type students, and the total

capacity of the low-quality schools is equal to the number of low-priority type students.

Each student draws vNM utility values v = (v1, . . . , vm) for the schools from the dis-

tribution fp(v), where fp(v) may depend on the students’ priority type p ∈ {ℓ, h}.8 We

refer to v as a student’s valuation type. Students compete for higher priorities through

the effort stage described below. After acquiring a certain priority type through the effort

stage, students learn their valuation type (but not the valuation type of other students)

and report ordinal preferences over schools. Assignment to a school is determined based

on priorities and reported preferences by some school choice mechanism X. This paper

focuses on deferred acceptance (DA) and immediate acceptance mechanisms (IA). We re-

fer to the extensive school choice literature for a detailed description of these mechanisms

(e.g., Abdulkadiroglu and Sönmez, 2003).

Since students learn their utility value after the effort stage (see Section 2.3), in the

effort stage, students have identical ex ante utilities for securing a high- or a low-priority

type. We denote these ex ante utilities by Vh and Vℓ, or sometimes V X
h and V X

ℓ when

a reference is made to the mechanism X the equilibrium of which induces utilities Vh

and Vℓ. The expected utilities Vℓ and Vh are the utilities on which students base their

decisions in the effort stage. For consistency with the effort stage and to avoid possible

extreme cases, we always assume Vh ≥ Vℓ.

2.2. Effort stage. Students compete by putting effort into acquiring the characteristics

that result in higher priorities. In the context of school choice, this can mean moving

closer to a particular set of schools or spending time and money on preparing for a

standardized test.

The total effort student i puts into obtaining a higher priority is ti. Student i’s

total effort is decomposed into i’s priority-independent effort ai and i’s priority-

dependent effort ri. As its name suggests, we think of ai as i’s optimal effort given

all benefits independent of acquiring a higher matching priority. For example, ai could

represent the amount of effort student i would put into preparing for standardized tests

“anyways”, for reasons other than the effect of test-results on priorities at schools (e.g.,

social prestige, curiosity, and use in determining outcomes independent of school assign-

ments). Priority-independent effort can also represent the effort a family would typically

put into moving to a new neighborhood for all reasons other than increased priority at

schools in this neighborhood. In contrast, priority-dependent effort ri is the part of

the total effort exerted due to the effect of effort on school priorities. For example, ri

could represent the additional cost a family is willing to pay to relocate to a new neigh-

borhood with desirable schools specifically because of the higher priority that the family

would secure in these desirable schools.

8We later impose constraints on the support of fp(v) that formalize the idea that schools in {s1, . . . , sg}
are of higher quality than schools in {sg+1, . . . , sm}.
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Types Notation Description Timing

Effort type a

Baseline effort a student
exerts regardless of

its effect on priority types

Exogenously given
at the beginning
of the effort stage

Priority type p
Whether the student is
high or low-priority

at high-quality schools

Acquired
through the
effort stage

valuation type v

Utility value
of being assigned

to a high-quality school

Drawn from
distribution fp(v)

after the effort stage

Table 1. Summary of the three type-dimensions that characterize stu-
dents through the game and when students learn about them.

Because priority-independent effort is chosen optimally for reasons other than securing

higher priorities, we take ai as given for every student and model it as a sunk cost.

In our effort stage, students choose a level of total effort ti that is at least ai. Whereas

priority-dependent effort is a decision variable, priority-independent effort is an exogenous

characteristic. Therefore, we often refer to a student’s priority-independent effort as her

effort type. A summary of the three type dimensions that characterize students through

the game (that is, effort type, priority type, and valuation type) is provided in Table 1.

Index players by their effort type: a1 ≥ a2 ≥ a3... ≥ an. We assume that ah+1 ̸= aj for

j ̸= h+ 1.9

Higher effort is costly and induces no benefit other than the higher priorities it may

provide (recall that any “intrinsic value” of effort is already captured by ai). The cost

of total effort ti for student i is given by e (ti). The cost of additional priority-dependent

effort is e (ti)− e (ai) which can also be written e (ri + ai)− e (ai). We assume that e is

continuous, strictly increasing, and there exists some t̃ such that Vh − Vℓ < e(t̃)− e(a1),

which guarantees that for all students, there is some level of effort that cannot be justified

even if it guarantees high-priority.

If a student exerts one of the h highest total efforts, she becomes a high-priority student

and her utility is Vh − (e (ti)− e (ai)). Otherwise, she is a low-priority student and her

utility is Vℓ − (e (ti)− e (ai)). Given a vector of total effort t, let Hi(t) be probability

student i becomes high-priority. Define Hi as follows:
∑n

i=1 Hi (t) = h and,

Hi (t) =


0

1

any value in [0, 1]

ti < tj for at least h players j ̸= i

ti > tj for at least n− h players j ̸= i

otherwise

.

9This assumption is required for the model to meet the power condition of Siegel (2009).
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Student i’s utility given total effort vector t is:

ui(t) := Hi(t)
[
Vh −

(
e(ti)− e(ai)

)]
+
(
1−Hi(t)

)[
Vℓ −

(
e(ti)− e(ai)

)]
.

If t∗ is an equilibrium of the effort stage, the net welfare when ex ante utilities are Vℓ

and Vh and effort types are a is10

W (Vh, Vℓ,a) :=
n∑

i=1

ui(t
∗)

2.3. Discussion of model assumptions. At least two features of our model deserve

comments. First, the game associated with the effort stage is one of complete information,

whereas we model the matching stage as an incomplete information game. The latter is

desirable because it is hard to conceive of realistic (especially large-scale) school choice

problems where every student knows every other student’s valuation type. However, one

could argue that the same is true of effort types.

As the equilibrium analysis reveals, coordination on a (complete information) Nash

equilibrium in the effort stage requires much less than full knowledge of the effort type

profile. To select her equilibrium priority-dependent effort, a student only needs to know

the threshold effort that is required to deter low effort types from competing for higher

priorities.11 For example, if priority types are awarded based on exam scores, knowing

the threshold-scores that prevailed in previous years could provide a reasonably accurate

estimate of the current year’s threshold, and students might be able to coordinate on the

Nash equilibrium.

Second, recall that the students learn their valuation type after learning the priority

type they acquired through the effort stage. The distribution from which valuations are

drawn may depend on the acquired priority type, which students know.12 But all students

compete for higher priorities before knowing the realization of these (possibly priority type

specific) distributions. In particular, students know they will prefer high-quality schools

to low-quality ones, but not exactly how intense this preference will be.

Although students’ ordinal ranking of schools may be relatively stable over time, stu-

dents may, in some cases, learn their precise cardinal values for schools after acquiring

priorities. For example, this is the case; if to secure a higher priority at a neighborhood’s

school, students have to move to that neighborhood years in advance of applying to these

schools.

10Dependence of W (Vh, Vℓ,a) on a particular equilibrium t∗ is omitted in the notation because we show
below (Theorem 1) that equilibrium utilities are unique in the effort stage.
11In turn, determining the threshold effort requires knowing only the h-th highest effort type, which is
the only information on the effort type profile that is required for students to coordinate on a (complete
information) Nash equilibrium in the effort stage.
12E.g., if a student obtained a higher priority at a school by moving to the school’s neighborhood, she
may be drawing a utility value for that school from a different distribution than a student who did not
move to the school’s neighborhood (e.g., because she now lives closer to that school).
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More importantly, assuming that students have the same expectations about their

future valuation type in the effort stage enables distinguishing between wasteful and sig-

naling aspects of effort. As a first step and a benchmark, it can be useful to isolate

the wasteful aspect of effort and compare net welfare under different school mechanisms

assuming that effort carries no welfare-relevant information. This can only be done if

a higher effort does not signal a more intense preference for high-quality schools. This

requires assuming that: (i) in the matching stage, students draw valuation types from

the same distribution, regardless of the priority type they acquired in the effort stage,

and (ii) in the effort stage, students only know this distribution and do not have addi-

tional idiosyncratic information about their future valuation type. We maintain these

two assumptions throughout section 4.1.

In Section 4.2, we open the door to the informative nature of effort in terms of preference

intensity by relaxing (i) and allowing the distribution of valuation types to depend on

priority types. In this section, we maintain the assumption that students only learn

the realization of their valuation type after the effort stage (i.e., we essentially maintain

(ii)). However, students now anticipate that if they acquire a high-priority type, they

will draw a valuation type from a different distribution than if they had acquired a low-

priority type. As we show, this is sufficient for effort to become a welfare relevant signal

and alter some — but not all — of the net welfare comparisons obtained in section 4.1.

Relaxing (ii) and endowing students in the effort stage with idiosyncratic information

about their future valuation type may provide further opportunities for effort to become

a signal of preference intensity. We discussed this last point in the conclusion and the

appendix.

3. Equilibrium in the effort stage

After a normalization to measure utility relative to the value of being low-priority,

this model is a generic all-pay contest (Siegel, 2009) (see Appendix Section A.1 for a

proof). Throughout this section, we use the results of Siegel (2009) to characterize the

equilibrium of the effort stage of our model.

3.1. Utility in equilibrium. Let ∆ = Vh − Vℓ. We refer to this as allocative inequality.

Let the threshold score of the contest be the t̃ that solves ∆ = e
(
t̃
)
− e (ah+1). Thus,

t̃ = e−1 (∆ + e (ah+1)) .

Since this contest is generic, the expected utilities of the players in any equilibrium of

the first-stage effort game are characterized by Siegel (2009, Theorem 1).
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Theorem 1. In any equilibrium with effort type vector a, the expected utilities of a player

with effort type ai is:

ui(a) :=


Vh, if i < h+ 1 and ai > e−1(∆ + e(ah+1))

Vℓ + e(ai)− e(ah+1), if i < h+ 1 and ai < e−1(∆ + e(ah+1))

Vℓ, if i ≥ h+ 1

.(1)

In any equilibrium, the n − h players with the lowest baseline scores do not exert

priority-dependent effort and have an expected utility of Vℓ.
13 This is precisely what they

would expect to get if the baseline scores themselves were used to determine priority.

The players with the h highest baseline scores, on the other hand, have expected utility

equal to Vh less the minimum effort cost to obtain at least the threshold score. Whether

these players exert priority-dependent effort depends on whether or not their baseline

score is already above the threshold. We say that the players for which i < h + 1 are

in the competitive set, which we denote by C(∆,a). Formally C(∆,a) is the set of

students i ∈ 1, ..., h such that ∆+ e (ah+1) ≥ e (ai), which corresponds to the second line

of (1). Let #C(∆,a) be the size of this set. For given e and ∆, we say that a is more

competitive the larger #C(∆,a).

With the utility characterization in Theorem 1, the net welfare in any equilibrium also

has a simple characterization. We first define a few terms. As defined earlier, ∆ is the

allocative inequality, the difference between the expected utility of high- and low-priority

players in the second stage. V is the allocative welfare. It corresponds to the welfare in

a model where additional effort is not possible and baseline scores are used to determine

priority. Finally, we define effort deadweight loss as D(∆,a). This is the aggregate wel-

fare cost of effort expended in the effort stage:

Allocative Inequality: ∆ := Vh − Vℓ

Allocative Welfare: V := hVh + (n− h)Vℓ = nVℓ + h∆

Effort Deadweight Loss: D(∆,a) =
∑h

i=1max {∆+ e (ah+1)− e (ai) , 0}

We then have the following characterization.

Corollary 1. In any equilibrium of the effort stage, expected net welfare is allocative

welfare less the effort deadweight loss, i.e.,

W (Vh, Vℓ,a) = V −D(∆,a).

3.2. Comparative statics. Allocative welfares Vℓ and Vh affect net welfare both directly

through allocative welfare and indirectly through effort deadweight loss due to changes

in competitive incentives. Increases to Vℓ strictly increase allocative welfare. Increases

to Vℓ also reduce the relative “prize” earned in becoming high-priority. This reduces

13This is in terms of unnormalized utility.
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competitive incentives, weakly decreasing effort deadweight loss. Thus, changes to Vℓ

strictly increase net welfare.

While increasing Vh also improves allocative welfare, this increase also changes incen-

tives to compete, weakly increasing effort deadweight loss. However, this effect never

overwhelms improvements in allocative welfare, and increases in Vh weakly increase net

welfare. The improvement is strict as long as some player does not need to put in any

extra effort beyond her priority-independent effort to reach the threshold score. That

is, if there is a student for which ∆ + e (ah+1) < e (ai). For such a student, priority-

independent effort is already enough to guarantee a high priority in equilibrium, since

there are not h other students willing to put in the level of effort to attain high-priority

with certainty.

Overall, the magnitude of the effect of Vh and Vℓ on welfare is mediated by the size

of the competitive set. The larger the competitive set, the more net welfare increases as

Vℓ increases, and the less it increases as Vh increases. When the competitive set is the

entire set of top h students (indexed by priority-independent effort), Vh does not affect

net welfare.

All Propositions and Corollaries in this section follow straightforwardly from Theorem

1, and proofs are therefore omitted.

Proposition 1. For almost all values of Vh, Vℓ,a,

∂W (Vh, Vℓ,a)

∂Vh

= h−#C(∆,a) ,
∂W (Vh, Vℓ,a)

∂Vℓ

= (n− h) + #C(∆,a).

Since players are indexed by ai and e is strictly increasing, all i < h + 1 are in the

competitive set as long as player 1 is in the competitive set. This leads to the following

corollary.

Corollary 2. For any Vh, Vℓ,a, the net welfare W (Vh, Vℓ,a) is strictly increasing in Vℓ

and increasing in Vh. It is strictly increasing in Vh if and only if ∆+ e (ah+1) < e (a1).

On the other hand, if even the student with the highest priority independent effort

is in the competitive set, the improvements to Vh do not affect welfare since the direct

improvements to allocative welfare are completely offset by the increased competitive

incentives.

Corollary 3. For any Vh, Vℓ,a, if ∆ + e (ah+1) ≥ e (a1), then W (Vh, Vℓ,a) = nVℓ and
∂W (Vh,Vℓ,a)

∂Vh
= 0

In our context, Corollary 3 provides an efficiency justification for fairness considera-

tions. Changes in the allocation mechanism that do not weakly improve the outcome

of low types cannot provide robust efficiency gains in highly competitive environments.

In other words, for any change to the allocation mechanism that reduces Vℓ, there is an

environment that is sufficiently competitive for that change to reduce net welfare. This
11



is true even if the change increases allocative welfare. For example, it may be tempting

to increase Vh by a large amount at the expense of a small decrease in Vℓ. However, in

very competitive environments, the high ability types would compete away almost all of

this efficiency improvement such that even a small decrease in value to the low-priority

players is enough to cause a net loss in welfare.

This logic is formalized in the following proposition. Again, it shows that an im-

provement in welfare of the low-priority type is essential to any change in the allocation

mechanism aimed at robustly improving net welfare (where robustness is with respect to

the competitiveness of the effort stage).

Proposition 2. For any Vh, Vℓ,a and V ′
h, V

′
ℓ such that Vh > V ′

h and Vℓ < V ′
ℓ , there exists

an a′ such that W (Vh, Vℓ,a) < W (V ′
h, V

′
ℓ ,a

′).

The previous results emphasize the importance (from an efficiency perspective) of the

fate of low-types as competitiveness increases. Even for a fixed, arbitrary level of competi-

tiveness, inequalities between low- and high-types (as represented by ∆) have a significant

impact on efficiency. Similarly, fixing allocative welfare, an increase in inequality harms

welfare as long as the competitive set is not empty.

Proposition 3. For any pair of Vh, Vℓ and V ′
h, V

′
ℓ and any a such that V (Vh, Vℓ) =

V (V ′
h, V

′
ℓ ), ∆

′ > ∆, and where ∆′ + e (ah+1) > e (ah), W (Vh, Vℓ,a) > W (V ′
h, V

′
ℓ ,a).

Naturally, although Proposition 3 isolates the inequality effect by imposing V (Vh, Vℓ) =

V (V ′
h, V

′
ℓ ), the proposition also has implications for situations where efficiency is improved.

Specifically, any efficiency improvement can be offset by a sufficient increase in inequali-

ties.

Corollary 4. For any pair of Vh, Vℓ and any ϵ > 0, there exists V ′
h, V

′
ℓ such that V (V ′

h, V
′
ℓ ) =

V (Vh, Vℓ) + ϵ but ∆′ > ∆ and W (V ′
h, V

′
ℓ ,a) < W (Vh, Vℓ,a).

4. Equilibrium in the matching stage

When reporting her preference, a student knows her priority type p as well as her

own valuation type v, but not the valuation type of other students. The equilibrium

probability for a priority type p to be assigned to school sa when the mechanism is X is

denoted by PX,p
a . In equilibrium, the expected utility of such a student is then

V X
p,v :=

∑
a∈A

vaP
X,p
a .

Recall that students do not know the realization of their valuation type during the

effort stage. In the effort stage, students only know the distribution fp(v) from which

they will draw their valuation type (which, as the subscript indicates, may depend on

the priority type p they acquire through the effort stage). Throughout we assume that

the supports of fℓ and fh are finite, and we let V denote a generic set of valuation types
12



that includes the supports of both fℓ and fh.
14 Before knowing the realization of fp(v),

the expected utility of a priority type p in the mechanism X is then

V X
p :=

∑
v∈V

V X
p,vfp(v).

In the effort stage, students base their decision on expected utilities V X
ℓ and V X

h . Recall

that the allocative welfare of a given mechanism X is then defined as V X = hV X
h + (n−

h)V X
ℓ .

4.1. Priority-independent valuations. In this section, we follow Abdulkadiroğlu et al.

(2011) by assuming that the support of f is a finite set Ṽ ⊂ {(v1, . . . , vm) ∈ [0, 1]m | v1 >
v2 > · · · > vm}. In particular, all students have the same ordinal preference, preferring

school sa to school sb if a < b, which is conceivable in areas where schools have a clear

quality ranking. Importantly, however, students may differ in their relative preference

intensities. In this section, we also focus on priority-independent valuations. That is,

every student draws a valuation type v from the same distribution f(v), regardless of

whether the student is a high- or low-priority type (that is, fℓ = fh = f). The case of

priority-dependent valuations is treated in the next section.

BecauseDA has a truthful dominant strategy, it makes sense to assume that individuals

report their preferences truthfully in DA. Thus, because students have the same ordinal

preference over schools, every student reports the same ranking of schools in DA. In

DA, therefore, the h high priority types are randomly assigned to the h high-quality

schools. The ℓ low-priority types are, on the other hand, randomly assigned to the ℓ

low-quality schools. Given the (dominant strategy) equilibrium of DA we let P̂ p
a denote

the probability that a student of type p is assigned to school sa, that is

P̂ h
a = qa/h if a ∈ {1, . . . , g}, and 0 otherwise, and

P̂ ℓ
a = qa/ℓ if a ∈ {g + 1, . . . ,m}, and 0 otherwise.

For a given (symmetric Bayesian) equilibrium σ∗ of IA and any strategy σ, let Ṗ p
a (σ)

be the probability that a student with priority type p is assigned to school sa if that

student plays strategy σ and all other students play the symmetric equilibrium strategy

σ∗.15 An equilibrium σ∗ of IA is segregating if high-priority types are never assigned

to a low-quality school. That is,
∑

v∈Ṽ Ṗ
h
y (σ

∗
h(v))fh(v) = 0 for every low-quality school

sy ∈ {sg+1, . . . , sm} (as in the dominant strategy equilibrium of DA). In contrast, an

equilibrium σ∗ of IA is blending if high-priority types are sometimes assigned to at

least one low-quality school. That is,
∑

v∈Ṽ Ṗ
h
y (σ

∗
h(v))fh(v) > 0 for some low-quality

school sy ∈ {sg+1, . . . , sm}.

14Finiteness is assumed to simplify the existence of Bayesian equilibria in IA.
15A strategy σ is a mapping from the set of valuation types into the set of mixed strategies over reported
preferences.

13



Example 1 (Blending equilibria with IA). Suppose there are three schools, two high-

quality schools sH1 and sH2, and one low-quality school sL. The distribution of valuations

is degenerate f(v∗) = 1 with v∗H1 > v∗H2 > v∗L. High-priority types can only rank one

high-quality school first and there is always a high-quality school H∗ that less than qH∗

high-priority types rank first. Therefore, low-priority types have a nonzero probability of

being assigned to sH∗ if they rank sH∗ first. As a consequence, low-priority types always

secure a payoff strictly larger than v∗(sL) in equilibrium. This, in turn, implies that the

equilibrium of IA must be blending because low-priority types would get a payoff of v∗L
in a segregating equilibrium.

The next theorem shows that low-priority types always prefer the equilibrium outcome

of IA to the dominant strategy outcome of DA.

Theorem 2. For any priority-independent distribution f , any valuation type v ∈ Ṽ, and
any symmetric equilibrium of IA, we have V IA

ℓ,v ≥ V DA
ℓ,v , and V IA

ℓ,v > V DA
ℓ,v if the equilibrium

of IA is blending.

Proof. Let σ∗ be any symmetric equilibrium of IA, with σ∗
ℓ the strategy played by the

low-priority types and σ∗
h the strategy played by the high-priority types. For every school

sa, the feasibility constraint (respecting quotas at schools) and the fact that IA is non-

wasteful imply

ℓ
∑
v∈Ṽ

Ṗ ℓ
a(σ

∗
ℓ )f(v) + h

∑
v∈Ṽ

Ṗ h
a (σ

∗
h)f(v) = qa.(2)

Equality (2) simply expresses the fact that in an equilibrium of IA, all the seats are

distributed and feasibility constraints are respected.

Fix any valuation type v̈ ∈ Ṽ . We show that when student i with valuation type v̈

is a low-priority type, (2) implies that if other students play the equilibrium strategies

specified by σ∗, student i can always play a strategy σ̃ that makes her at least as well

off as under DA. The proposition then follows from the fact that i must be at least as

well-of in the equilibrium σ∗ as she is when she plays σ̈ (and others play according to σ∗).

Let σ̈ℓ :=
∑

v∈Ṽ σ
∗
ℓ (v)f(v). That is, σ̈ℓ involves playing σ∗

ℓ (v) with probability f(v),

i.e., according to the probability distribution of priority types that play that strategy in

the equilibrium σ∗. For any school sa, the probability that the student is assigned to sa

when she plays σ̈ℓ and others play the equilibrium strategy is

Ṗ ℓ
a(σ̈ℓ) = Ṗ ℓ

a

∑
v∈Ṽ

σ∗
ℓ (v)f(v)

 =
∑
v∈Ṽ

Ṗ ℓ
a(σ

∗
ℓ (v))f(v) =

qa − h
∑

v∈Ṽ Ṗ
h
a (σ

∗
h)f(v)

ℓ
,(3)

were the last equality follows from (2).

Observe that (3) implies

Ṗ ℓ
y (σ̈ℓ) ≤ P̂ ℓ

y , for every low-quality school sy ∈ {sg+1, . . . , sm}.(4)
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Because P̂ ℓ
a = 0 for all a ∈ {g + 1, . . . ,m}, we also have

Ṗ ℓ
x(σ̈ℓ) ≥ P̂ ℓ

x, for every high-quality school sx ∈ {s1, . . . , sg}.(5)

Specifically, any inequality in (4) is strict if
∑

v∈Ṽ Ṗ
h
y (σ

∗
h)f(v) > 0. That is, one of

these inequalities is strict if the equilibrium of IA is blending. As a consequence, if the

equilibrium of IA is blending, some of the inequalities in (5) must also be strict.

Together, (4) and (5) imply that for any valuation type v ∈ V̄ ,

V IA
ℓ,v ≥

∑
a∈A

vaṖ
ℓ
a(σ

∗
ℓ ) ≥

∑
a∈A

vaP̂
ℓ
a = V DA

ℓ,v ,

where the last inequality is strict if the equilibrium of IA is blending. □

By the definition of V X
p , we have the following ex ante corollary of Theorem 2.

Corollary 5. For any priority-independent distribution f and any symmetric equilibrium

of IA, we have V IA
ℓ ≥ V DA

ℓ , and V IA
ℓ > V DA

ℓ if the equilibrium of IA is blending.

Abdulkadiroğlu et al. (2011) show that in the absence of preexisting priorities (that is

when, unlike in our model, all priorities are determined through tie-breaking), all students

are always better off under IA than under DA (as opposed to low-priority types only

in Theorem 2). As Troyan (2012) shows, this is not true in the presence of preexisting

priorities. In particular, with two priority types as in the present model, some high-

priority types can be worse off under IA than under DA (Troyan, 2012, Examples 1

and 2). This is intuitive: In DA, high-priority types are guaranteed an assignment at

one of the high-quality schools whereas in IA, low-priority types can “steal” seats at

high-quality schools, hence making some high-priority types worse off than in DA.

Troyan (2012) however shows that from an ex ante perspective, IA remains preferable

to DA even in the presence of preexisting priorities. That is, when one considers a

student’s expected utility before she draws her priority type, the student is better off

under IA than under DA. In our context and our terminology, Proposition 2 in Troyan

(2012) notably implies that the allocative welfare of IA is greater than the allocative

welfare of DA, that is, V IA ≥ V DA.

Importantly, this result requires us to assume that the distribution of priority is the

same for every student. In practice, this is rarely the case. Students’ priority types

typically correlate with their characteristics such as parents’ income, home location, in-

tellectual abilities, etc. This puts in question the use of allocative efficiency as a social

objective. If V X > V Y but Y favors disadvantaged students, one may have a legitimate

preference for Y . The proof of Theorem 2 shows that IA promotes access to high-quality

schools for students with low priorities (as was already suggested in a special case by

Abdulkadiroğlu et al., 2011, Theorem 3). Suppose that disadvantaged students tend to

be the students with low priorities, as can be expected, for example, if priorities follow
15



from test scores. Then Theorem 2 indicates that IA is better than DA in helping dis-

advantaged students secure a higher-quality school, which complements and reinforces

Troyan’s comparison in terms of allocative welfare.16

Together with most of the school choice literature (including Abdulkadiroğlu et al.,

2011), Troyan (2012) also focuses on the welfare effects of mechanism selection mediated

by assignments to schools themselves. As we argued, the choice of a mechanism impacts

welfare beyond determining students’ assignments. In particular, by changing the value

associated with different priority types, a change in the allocation mechanism can change

the “rent-seeking” behavior that leads to the acquisition of these priority types. Mech-

anisms that increase the utility wedge between high- and low-priority types may foster

fiercer competition for higher priorities, which can increase wasteful effort. The natural

question is therefore whether the efficiency advantage of IA over DA is robust to the ad-

dition of an effort stage, that is, whether net welfare W (V IA
ℓ , V IA

h ,a) is also higher than

net welfare W (V DA
ℓ , V DA

h ,a)). The next proposition answers positively when valuations

are priority-independent.

Proposition 4. For any priority-independent distribution f and any symmetric equilib-

rium of IA (i)W (V IA
ℓ , V IA

h ,a) ≥ W (V DA
ℓ , V DA

h ,a), and (ii) W (V IA
ℓ , V IA

h ,a) > W (V DA
ℓ , V DA

h ,a)

if the equilibrium of IA is blending and there is at least one student in the competitive

set under DA (i.e., C(∆DA,a) ≥ 1).

Proof. (i). By Corollary 5, V IA
ℓ ≥ V DA

ℓ . Thus, if we also have V IA
h ≥ V DA

h , the proposi-

tion follows directly from Proposition 1. Hence, assume that V IA
h < V DA

h . By Corollary

1, the difference between the two mechanisms’ net welfare is

W (V IA
ℓ , V IA

h ,a)−W (V DA
ℓ , V DA

h ,a) =
(
V IA − V DA

)︸ ︷︷ ︸
:=Ω1

+
(
D(∆DA,a)−D(∆IA,a)

)︸ ︷︷ ︸
:=Ω2

.

By Troyan (2012, Proposition 2), we have V IA ≥ V DA, which implies Ω1 ≥ 0. Also,

together, V IA
ℓ ≥ V DA

ℓ and V IA
h < V DA

ℓ imply ∆DA > ∆IA. By the definition of the

deadweight loss term, this implies that the deadweight loss is larger in DA than in IA,

which in turn implies Ω2 ≥ 0.

(ii). Because the equilibrium is blending, we have V IA
ℓ > V DA

ℓ by Corollary 5. Thus,

if we also have V IA
h ≥ V DA

h , the proposition follows directly from Proposition 1. Hence,

assume that V IA
h < V DA

h which together with V IA
ℓ > V DA

ℓ implies ∆DA > ∆IA. Recall

that Ω1,Ω2 ≥ 0 by the proof of (i). Therefore, Ω2 > 0 is sufficient to have the desired

result. By definition, the set of competitive students grows with ∆, and the set of

competitive students under IA is therefore a subset of the same set under DA. Because

only competitive students contribute to the deadweight loss and each of these students’

contribution increases with ∆, we therefore have Ω2 > 0. □
16An argument similar to the proof of Theorem 2 can be used to show that regardless of the number of
priority types, the lowest priority type is always better off under IA than under DA. In that sense, most
disadvantaged students prefer IA to DA even when there are more than two priority types.
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Importantly, the ex ante efficiency advantage of IA over DA demonstrated by Troyan

(2012, Proposition 2) relies on students having heterogeneous cardinal preferences over

schools. When heterogeneity in cardinal preferences vanishes, most mechanisms tend to

provide the same allocative welfare, and it becomes impossible for one mechanism to

dominate another in terms of ex ante (allocative) efficiency.

Observation 1. If vi = v for all i ∈ {1, . . . ,m}, then for any two non-wasteful mech-

anisms M and M ′, the allocative welfare V M = V M ′
. In particular, in this case,

V IA = V DA.

However, even in this extreme case (fully homogeneous cardinal preferences), Propo-

sition 4 shows that IA remains more efficient than DA in terms of net welfare. This is

because, even when no allocative efficiency gains are possible, IA still favors low-priority

types over high-priority types, which in turns means that wasteful competition is reduced

in the effort stage.17

Observation 2. Proposition 4 applies even when vi = v for all i ∈ {1, . . . ,m} and

V IA = V DA. In particular, also in this case, W (V IA
ℓ , V IA

h ,a) > W (V DA
ℓ , V DA

h ,a) if the

equilibrium of IA is blending and there is at least one student in the competitive set under

DA.

4.2. Priority-dependent valuations. In the presence of preexisting priorities, the as-

sumption that valuations are independent of priorities can be problematic. Instead,

students’ priority types are often correlated with their valuation types. For example, stu-

dents who live inside a neighborhood usually have higher priorities in the schools in that

neighborhood. These students may also have a more intense preference for the schools

in that neighborhood – because of shorter commute times or because parents want their

children to attend the same school as their neighbors – which results in priority-dependent

valuations.

The results in the previous section are based on priority-independent valuations. This

is true, for example, for Proposition 4 which relies on Theorem 2 to show that the

ex ante efficiency advantage of IA over DA (Troyan, 2012, Proposition 2) is robust to

the addition of an effort stage. When correlations are introduced, Theorem 2 does not

necessarily apply and the picture becomes more complex.

On the one hand, IA enables efficiency gains by incentivizing students to reveal in-

formation about their cardinal preferences through their ordinal reports. Even when

valuations correlate with priority types, priorities that result from tie-breaking carry no

information on cardinal utility. In an equilibrium of IA, it is possible that some of these

priorities are violated in a welfare-improving way (compared to DA).

17Formally, even when V IA = V DA, we still have V DA
ℓ ≤ V IA

ℓ and V DA
h ≥ V IA

h , which by Corollary 5
implies W (V IA

ℓ , V IA
h ,a) ≥ W (V DA

ℓ , V DA
h ,a)
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On the other hand, IA also enables violations of preexisting priorities which carry useful

information on cardinal utility if valuations are priority-dependent.18 As a consequence,

IA may not take full advantage of correlations between priorities and valuations. In

contrast, DA respects priorities and therefore takes full advantage of the correlations

between preferences and priorities. DA however does not incentivize cardinal preference

revelation and therefore misses some efficiency improvement opportunities.

To shed light on these two effects, we generalize the model of the previous section. We

now assume that low-priority types and high-priority types draw valuation types from

different distributions fℓ and fh, with fℓ ̸= fh. Recall that the priority types on which

these distributions depend are acquired through the first effort stage. That is, students

here develop a particular taste for some schools, as a result of the effort they exerted to

secure higher priority in these schools.

We also relax the assumption of common ordinal preferences and let the finite set of

possible utility values be V̄ ⊂ [0, 1]m, without requiring that v1 > · · · > vm for every

v ∈ V̄ . That is, although we keep the distinction between high- and low-quality schools

in terminology, we allow students to prefer low-quality schools to high-quality schools

(e.g., because they live closer to a low-quality school).

Allowing valuations to be correlated with priority types, it is not hard to find examples

of fℓ and fh for which DA is more allocatively efficient than IA. For example, suppose

that fℓ and fh satisfy the following properties:

a) For all v,v′ in the support of (fh), vi = v′i for all i ∈ {1, . . . , g}, and for all v,v′

in the support of (fℓ), vi = v′i for all i ∈ {g + 1, . . . ,m}.
b) If v is in the support of (fℓ) or (fh), then vi > vj for all i ∈ {1, . . . , g} and all

j ∈ {g + 1, . . . ,m}.
c) For all v in the support of fh and all v′ in the support of fℓ, we have vi > v′i for

all i ∈ {1, . . . , g}
In words, property a) says that cardinal preferences are homogeneous at high-quality

schools among high-priority types and at low-quality schools among low-priority types.

Property b) says that ordinal preferences between high- and low-quality schools are main-

tained: Every student still prefers any high-quality school to any low-quality school. Fi-

nally, property c) says that the value a high-priority type associates with a high-quality

school is always higher than the value a low-priority type associates to that school. If fℓ

and fh satisfy a), b), and c), we say that (fℓ, fh) favors DA.

If (fℓ, fh) favors DA, then DA is more allocatively efficient than IA. Intuitively, a)

reduces the opportunities for efficiency improvements in IA, while c) makes respecting

priorities optimal from the point of view of allocative efficiency. Finally, b) guarantees

that the (dominant strategy) outcome of DA respects priorities.

18In IA, a student from a given district may be assigned with positive probability to a school in another
district, even if she has a lower average value at that school than the average value among students in
the district of that school.

18



Observation 3. If (fℓ, fh) favors DA, then V DA ≥ V IA and V DA > V IA if the equilib-

rium of IA is blending.

Proof. By c), allocating a high-quality school to a high-priority type is always preferable

to allocating the same school to a low-priority type from the point of view of allocative

efficiency. By a), given that high-quality schools are allocated to high-priority types only,

the allocation of these schools among high-priority types is irrelevant from the point

of view of allocative efficiency. Similarly, by a), if low-quality schools are allocated to

low-priority types only, then the allocation of these schools among low-priority types is

irrelevant from the point of view of allocative efficiency.

Thus, any allocation of schools that assigns high-priority types to high-quality schools

and low-priority types to low-quality schools exclusively is optimal from the point of view

of allocative efficiency. By b), this is true of every allocation in the support of DA given

fℓ and fh. Hence V DA is optimal and we have V DA ≥ V IA. It is also straightforward

from the above argument that V DA > V IA if the equilibrium of IA is blending. □

More generally, V DA > V IA if DA’s efficiency gains from exploiting correlations be-

tween priorities and valuations outweigh IA’s efficiency gains from incentivizing cardinal

preference revelation, which may occur under conditions on fℓ and fh milder than DA-

favorability.

Interestingly, for a class of pairs (fℓ, fh) including DA-favorable pairs, Theorem 2 ex-

tends to the more general model studied in this section. That is, for (fℓ, fh) in this class,

the low-priority types remain better off in IA than in DA. In turn, this implies that even

if V DA > V IA, the net welfare of DA remains lower than the net welfare of IA when a

is sufficiently competitive.

Consider the following property of fℓ:

d) For all v in the support of fℓ, we have vg+1 > vg+2 > · · · > vm.

In words, property d) says that ordinal preferences over low-quality schools are homo-

geneous among low-priority types. If (fℓ, fh) satisfies b) and d), we say that (fℓ, fh)

is sufficiently homogeneous. Clearly, a) implies d) and (fℓ, fh) being DA-favorable

implies that the pair is also sufficiently homogeneous.

The following theorem generalizes Theorem 1 to priority-dependent valuations under

the assumption that (fℓ, fh) is sufficiently homogeneous.

Theorem 3. For any sufficiently homogeneous (fℓ, fh), any valuation type v ∈ V̄, and
any symmetric equilibrium of IA, we have V IA

ℓ,v ≥ V DA
ℓ,v , and V IA

ℓ,v > V DA
ℓ,v if the equilibrium

of IA is blending.

Proof. By b), high-priority types always prefer high-quality schools to low-quality schools.

Hence, high-priority types always rank all high-quality schools higher than any low-quality

school in the dominant strategy equilibrium of DA. In DA, all the seats at high-quality

schools are therefore assigned uniformly at random to high-priority types. By d), the
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low-priority type all report the same ranking over low-quality schools. Because all seats

at high-quality schools are occupied by high-priority types, the ℓ low-priority type are

therefore assigned uniformly at random to one of the ℓ low-quality schools. Therefore,

the probability that a low-priority type student is assigned to some school sa under the

dominant strategy outcome of DA is again P̂ ℓ
a .

The rest of the proof is similar to the proof of Theorem 2. For every school sa, the

feasibility constraint (respecting quotas at schools) and the fact that IA is non-wasteful

now imply that at any equilibrium σ∗ of IA,

ℓ
∑
v∈V̄

Ṗ ℓ
a(σ

∗
ℓ )fℓ(v) + h

∑
v∈V̄

Ṗ h
a (σ

∗
h)fh(v) = qa,(6)

where compared to (2), we have only added indices ℓ and h to the density functions.

The strategy that makes any type in IA at least as well off as in DA is now σ̈ℓ :=∑
v∈V̄ σ

∗
ℓ (v)fℓ(v), where again, we only added the superscript “ℓ” to the distribution

(compared to the corresponding strategy in the proof of Theorem 2).

We then have

Ṗ ℓ
a(σ̃ℓ) = Ṗ ℓ

a

(∑
v∈V̄

σ∗
ℓ (v)fℓ(v)

)
=
∑
v∈V̄

Ṗ ℓ
a(σ

∗
ℓ (v))fℓ(v) =

qa − h
∑

v∈V̄ Ṗ
h
s (σ

∗)fh(v)

ℓ
,(7)

where the last equality follows from (6). Again, (7) implies (4) and (5), with each

individual inequality in (4) being strict if
∑

v∈V̄ Ṗ
h
y (σ

∗)fh(v) > 0. Together, (4), (5),

and b) imply that for any valuation type v ∈ V̄ ,

V IA
ℓ,v ≥

∑
a∈A

vaṖ
ℓ
a(σ

∗
ℓ ) ≥

∑
a∈A

vaP̂
ℓ
a = V DA

ℓ,v ,

where the last inequality is strict if the equilibrium of IA is blending. □

Clearly, by definition of V X
p , the following is a direct corollary of Theorem 3, and

generalizes Corollary 5.

Corollary 6. For any sufficiently homogeneous (fℓ, fh) and any symmetric equilibrium

of IA, we have V IA
ℓ ≥ V DA

ℓ , and V IA
ℓ > V DA

ℓ if the equilibrium of IA is blending.

Corollary 6 implies that although net welfare may be higher under DA than under

IA when valuations are priority-dependent, this can only happen if the allocative welfare

of DA is higher than the allocative welfare of IA. Even when DA is allocatively more

efficient than IA, the net welfare also remains higher under IA than under DA if the

effort stage is sufficiently competitive.

Proposition 5. Suppose that (fℓ, fh) is sufficiently homogeneous. (i) If V IA ≥ V DA,

then W (V IA
ℓ , V IA

h ,a) ≥ W (V DA
ℓ , V DA

h ,a). (ii) There exists a sufficiently competitive

such that W (V IA
ℓ , V IA

h ,a) ≥ W (V DA
ℓ , V DA

h ,a) even if V DA > V IA.
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Proof. (i). We have V IA ≥ V DA and V IA
ℓ ≥ V DA

ℓ and the proof is therefore identical

to the proof of Proposition 4(i). (ii). The proof follows directly from Corollary 6 and

Proposition 2.

□

5. Conclusion

In this paper, we find that, in a context where students compete for priority in a school

choice mechanism, IA may have better welfare properties than DA. Troyan (2012) and

Abdulkadiroğlu et al. (2011) also provide cases in which IA provides higher welfare than

DA but purely from an allocation perspective with exogenous priorities. Our results

extend this qualitative conclusion by showing that IA can be preferable to DA from a

net welfare perspective, including the cost for students to compete for priorities. As we

show, this is true even when DA provides a more efficient allocation than IA.

We stress, however, that our results should not been seen an unconditional defense of

IA. In particular, we have shown in Section 4.2 that when valuations in the matching

stage depend on the priorities acquired through the effort stage, DA can have a better

allocative efficiency than IA. For IA’s overall efficiency to dominate DA’s, the effort

stage then needs to be sufficiently competitive so that DA’s higher inequality (between

high- and low-priority types) induces a large wasteful effort with DA that overwhelms its

advantage in terms of allocative efficiency.

Overall, our main goal was not to provide general conclusions on the relative efficiency

of IA and DA. Rather, we have attempted to draw attention to the interactions between

the choice of a mechanism and the game through which participants acquire priorities.

More generally, we have shown how the choice of a mechanism can have economically

significant impacts beyond the problem the mechanism is specifically designed to solve.

To further illustrate how the balance can “tip back” in favor of DA, we conclude by

discussing another situation in which interactions between the school choice mechanism

and the effort stage may results in DA being more efficient than IA.

Throughout this paper, we have assumed that students do not know the realization

of their utility value for schools at the time they exert effort to secure higher priorities.

Instead, we have assumed that prior to the matching stage, students only know the

distribution from which they will draw values for schools in the matching stage, but they

do not know the realization of this distribution.19

19 Signaling valuation through effort is discussed to some extent in Section 4.2. However, in Section
4.2, students do not differ in their potential valuations between schools at the beginning of the effort
stage. Students rather acquire different valuations over schools as they gain different priorities over these
schools (e.g., students acquire a higher preference for schools in a given neighborhood by moving to
that neighborhood, which also gives them a higher priority at the schools in that neighborhood). Here,
in comparison, we discuss a variant of our model in which students are initially heterogeneous in their
valuation over schools (that is, heterogeneous from the very beginning of the effort stage) and are able
to signal their heterogeneous valuation through heterogeneous efforts.
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Suppose instead that students have intrinsically heterogeneous utility over schools, and

these utilities are known at the beginning of the effort stage. Students can then signal

their heterogeneous valuation directly through the effort stage. This can potentially

reverse the efficiency comparison between DA and IA. To understand why, note that

if students with a more intense preference for higher-quality schools exert more effort

and obtain higher priorities as a consequence, priorities become a signal of preference

intensity. In this case, respecting priorities may become desirable from the point of view

of efficiency. Because DA is better at respecting priorities than IA, DA could therefore

be more efficient than IA.20

An example where signaling of intrinsic valuation through effort makes DA more ef-

ficient than IA is presented in Appendix Section A.2. As the example illustrates, these

efficiency gains can materialize even when effort types are perfectly competitive with ai = a

for all i ∈ {1, . . . , n}, which contrasts with Corollary 5. Again, this example points at

the importance of better understanding the interaction between the choice of mechanism

and the game through which students acquire priorities at schools. More generally, it

stresses the value of considering mechanism selection in “general equilibrium” settings,

rather than focusing exclusively on the partial equilibrium effect a mechanism has on the

allocation problem it is designed to solve.

20Although this is different from the kind of signaling discussed in Section 4.2 (see footnote 19), the
intuition is similar to that presented in Section 4.2.
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Appendix A. Appendix

A.1. Stage 1 Contest isGeneric. Let ũi (t) = ui (t)−Vℓ. Rewrite ũi (t) = Hi (t) vi (ti)−
(1−Hi (t)) ci (ti) where vi (ti) and ci (ti) are defined follows:

vi (ti) := Vh − Vℓ − (e (ti)− e (ai))

ci (ti) := (e (ti)− e (ai))

ũi (t) is a normalization of ui with the same constant Vℓ subtracted from the utility of

each player. With this normalization, the contest meets A1 − A3 as well as the power

and cost conditions of Siegel (2009).

(A1 ) vi and −ci are continuous since e is assumed to be continuous. vi and −ci are

strictly decreasing since e is assumed to be strictly increasing.

(A2 ) vi(ai) = Vh − Vℓ > 0 by assumption. ℓimsi→∞vi(si) < ci(ai) = 0 since e is strictly

increasing and there exists some t̃ such that Vh − Vℓ < e(t̃)− e(a1).

(A3 ) ci (ti) > 0 if vi (ti) = 0 since vi (ti) = Vh − Vℓ − ci (ti) and Vh − Vℓ > 0.

Let the reach of a player ρi, be the score such that vi (ρi) = 0. The reach of a player

is the ρi that solves e (ρi) = Vh − Vℓ + e (ai). Since the effort function e is identical for

each player and is assumed to be strictly increasing, and since the players are indexed

by ai, ρi ≥ ρj for i < j. The threshold is given by t̃ = ρh+1. A player’s power is

vi
(
t̃
)
= Vh − Vℓ −

(
e
(
t̃
)
− e (ai)

)
.

(Power Condition) vh+1

(
t̃
)
= vh+1 (rh+1) = 0 by construction and by the assumption

that ah+1 ̸= aj for j ̸= h+ 1, vi
(
t̃
)
̸= 0 for all i ̸= h+ 1.

(Cost Condition) vi (ti) is strictly decreasing for h + 1 at t̃ since e is assumed to be

strictly increasing.

A.2. Signaling differences in intrinsic valuation through effort. Consider a vari-

ation of our model where students have different valuation types fi(v). That is, students

now draw valuations over schools from idiosyncratic distributions which they know at the

beginning of the effort stage. This is unlike the model presented in the paper where all

high- or low-priority types draw a valuation from the same distribution fℓ or fh, respec-

tively. In that case, valuation types are “acquired” through priorities. Here, we assume

that valuation types are independent of priority types and may differ from one student to
25



another. In particular, unlike in Section 4.2, it is in principle possible for a high valuation

type to have a low-priority type, and vice versa.

In this case, we want to show that DA can be more efficient than IA even in a perfectly

competitive environment, and even when DA induces more wasteful effort. The reason is

that in this new setting, the effort becomes a signal of students’ heterogeneous valuations

fℓ or fh. Therefore, even if effort is costly and DA forces students to exert more effort

than IA, this can be more than compensated for by the usefulness of the signal from an

efficiency standpoint.

To rule out efficiency results driven by insufficient competitiveness, we assume ai = a

for all i ∈ {1, . . . , n}. For simplicity, we also assume a linear cost of effort. There are

four students and three schools, sH1 , sH2 , and sL. Schools sH1 and sH2 have one seat,

and school sL has two seats. We consider the case of two valuation types h and ℓ with

degenerate valuation distributions fh and fℓ with fh(v
h) = 1 and fℓ(v

ℓ) = 1, where vh

and vℓ are defined as follows:

Schools H1 H2 L

vh .8 .2 0

vℓ .55 .25 .20

There are two high valuation types that draw values from fh, and two low-valuation

types that draw values from fℓ. Students still compete for high priority in high-quality

schools H and HM through effort, with the two highest-effort students getting high

priorities in high-quality schools (ties are again broken symmetrically at random).

Let V X
i,j denote the value for allocative welfare of valuation type i and priority type

j when the mechanism is X. For example, V IA
h,ℓ is the value for a high valuation /

low priority type when the mechanism is IA. We now compute valuations depending

on whether types are aligned, with high valuation types having high-priority types, or

misaligned, with high valuation types having low-priority types.

IA with aligned types. Observe that ranking school sL anywhere but last is dom-

inated for all students. Thus, students must choose between the strategy Q1 consisting

of ranking sH1 first followed by sH2, and the strategy Q2 consisting of ranking sH2 first

followed by sH1 (or a mix of these two strategies).

For high valuation types, Q1 is a dominant strategy.21 The best response for low

valuation types is Q2, which produces the following valuations:

• V IA
h,h = (1/2) ∗ 0.8 + (1/2) ∗ 0 = 0.4, and

• V IA
ℓ,ℓ = (1/2) ∗ 0.25 + (1/2) ∗ 0.20 = 0.225.

IA with misaligned types. Again, ranking school sL anywhere but last is dominated

for all students, and the strategies of the students are Q1 and Q2 (or a mix thereof). For

21Strategy Q1 is a strict best-response both when the other high valuation type reports Q1 and when
the other high valuation type reports Q2.
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low valuation types, Q1 is a dominant strategy.22 The best response for low valuation

types is Q2, which produces the following valuations:

• V IA
h,ℓ = (1/2) ∗ 0.2 + (1/2) ∗ 0 = 0.1, and

• V IA
ℓ,h = (1/2) ∗ 0.55 + (1/2) ∗ 0.20 = 0.375.

DA with aligned types. Valuations are:

• V DA
h,h = (1/2) ∗ 0.8 + (1/2) ∗ 0.2 = 0.5, and

• V DA
ℓ,ℓ = 0.20.

DA with misaligned types. Valuations are:

• V DA
h,ℓ = 0, and

• V DA
ℓ,h = (1/2) ∗ 0.6 + (1/2) ∗ 0.20 = 0.4.

This implies

V IA
h,h − V IA

h,ℓ = 0.3 > 0.175 = V IA
ℓ,h − V IA

ℓ,ℓ ,

and

V DA
h,h − V DA

h,ℓ = 0.5 > 0.2 = V DA
ℓ,h − V DA

ℓ,ℓ .

Thus, in an equilibrium of the effort stage with linear effort functions, the high valuation

types exert the most effort and become high-priority types. Specifically, high valuation

types exert 0.175 effort when the mechanism is IA and 0.275 when the mechanism is DA

(low valuation types exert no effort).

Therefore, the net welfare under each mechanism is:

• W (V IA
ℓ , V IA

h ,a) = 2 ∗ [0.4− 0.175] + 2 ∗ 0.225 = 0.9, and

• W (V DA
ℓ , V DA

h ,a) = 2 ∗ [0.5− 0.2] + 2 ∗ 0.2 = 1.

That is, the higher effort cost inherent with DA is more than compensated by the

fact that DA makes better use of the valuation type signaling contained in that effort.

Of course, this is just one example and other valuation profiles can be found for which

the additional cost of effort in DA outweighs DA’s better use of effort signaling. This

again points to the importance of better understanding the mechanisms through which

students acquire priorities and their interactions with allocation mechanisms, and we

leave potential general results in the case of intrinsic valuation heterogeneity for future

research.

22Again, strategy Q1 is a strict best-response both when the other low valuation type reports Q1 (yielding
0.3 as a payoff, instead of 0.25 under Q2) and when the other low valuation type reports Q2.
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