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1. INTRODUCTION

Subjective beliefs play a crucial role in economic decision-making. Relevant beliefs are often
about real-valued random variables.1 The decision to buy an asset depends on beliefs about
the future price. The decision to install farm irrigation depends on beliefs about future rain-
fall. In these cases, beliefs take the form of a density function over the range of possible
values.

Decisions can depend in complex ways on the subjective belief distribution. For example,
the value of an asset to a risk-neutral buyer depends on the mean of the price distribution.
The value of irrigation for a farmer depends on the likelihood and severity of dry conditions,
which may be related to the lower tail of the rainfall distribution. Because of this, it is
important that a belief elicitation methodology in this environment is flexible in allowing a
researcher to capture the relevant information about the subjective distribution.

In this paper, we introduce a methodology for eliciting quantiles of a subjective real-
valued belief using a price list methodology: the quantile price list. Our methodology is
simple, incentive compatible under very general conditions, and can be extended to elicit
any quantile. This allows researchers to pinpoint the information they require or to get a
more comprehensive view of a participant’s underlying beliefs by eliciting several quantiles.
We also demonstrate how the elicited quantiles can be used to approximate an entire belief
distribution and estimate unobserved properties, such as the mean.

We demonstrate our methodology using an experiment on beliefs about student math test
performance. Twenty students from The Ohio State University took a math test and were
marked as “successful” if they answered at least thirteen questions correctly. We elicited the
beliefs of the participants about the number of students who were successful, specifically the
0.25, 0.50 (median), and 0.75 quantiles of their subjective belief distributions, and use these
beliefs to approximate the entire cumulative distribution function for each participant.

Additionally, we elicited the probability each participant believes that a randomly chosen
student passed the math task using a price list methodology for probabilities proposed in
Holt and Smith (2016). We compare the approximated CDF’s from our methodology to the
implied binomial distributions induced from this elicited probability and find that the actual
subjective CDFs are much “flatter” than the implied binomial distributions, demonstrating
how our methodology can provide a more nuanced understanding of beliefs.

Section 2 outlines the theory of quantile price lists. Section 3 compares our methodology
with other methods. Section 4 describes our experimental design. Section 5 reports the
results of the experiment, and Section 6 concludes with a discussion focusing on potential
applications.

1Either truly random or random from the perspective of the decision maker
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2. THEORY

We begin this section by describing our procedure informally and discussing why and under
what conditions it elicits quantiles of a subjective belief. In the next section, we formalize
this discussion and prove incentive compatibility.

To make these examples concrete and to show that a subjective belief need not be “about"
an inherently random quantity, suppose that we want to learn about a participant’s belief
about the distance between Los Angeles and San Diego. Let us start with a participant who
is somewhat familiar with the geography of California. They know that these cities are both
in southern California and are not that far apart.

Suppose that we ask this participant if they would rather have $10 with a 75% chance or
$10 if the distance between the two cities is actually less than 1000 miles. This participant
believes that the distance is almost certain to be less than 1000 miles and chooses the latter
option, since they believe that it will yield the $10 with a nearly 100% chance. We can con-
clude that whatever the distribution of their belief F about the distance between these two
cities, it is the case that F(X ≤ 1000)> 0.75.

Now suppose that we continue asking questions like this, but where the second option
pays conditional on the distance being below 900,800,700,600,500,400 and 300 respectively.
In each case, the participant chooses the second option each time. However, they conclude
that the chance that the distance is below 200 miles is less than 75% and, when asked to
compare being paid $10 with a 75% chance and being paid conditional on the distance being
below 200 miles, they now choose the first option. From these choices, we can conclude that
for their belief F, F(X ≤ 300)> 0.75 but F(X ≤ 200)< 0.75. Thus, whatever number x solves
F(X ≤ x)= 0.75 (the 75-th quantile) must be between 200 and 300.

To find a different quantile, we repeat this exercise with a different objective lottery. For
example, if the same participant were asked to compare $10 with a 25% chance and $10 if
the distance is below 200, they may well choose the latter option but switch to choosing the
objective lottery when asked to compare it to $10 if the distance is below 100. These pairs
of choices imply that F(X ≤ 200) > 0.25 but F(X ≤ 100) < 0.25. We can conclude the 0.25
quantile of their subjective belief is between 100 and 200.

Notice that in these cases, we use the choices to bound the number x that would create
an indifference between some objective lottery that pays with probability p and an act that
pays if the random variable is below x. We interpret this x as being the p−th quantile of
the participant’s belief. To interpret this indifference as a quantile of the belief, we need to
assume a few things about preferences:

If a participant is indifferent between a 75% chance of $10 and $10 if the random variable
is below 250, but strictly prefers a 75% chance of $20 to $20 if the random variable is below
250 then we cannot interpret 250 as the 0.75 quantile because the number we would infer
as the 0.75 quantile appears to depend on whether $10 or $20 is the outcome. In this case,
we cannot reliably infer a belief using some arbitrarily chosen outcome for incentivizing the
revelation of that belief. Thus, to interpret the outcome of our procedure as identifying the
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quantile of a belief, we need to assume that participants’ willingness to substitute between
acts and objective lotteries does not depend on the arbitrarily chosen outcome. This is the
replacement axiom.

Another way our procedure can fail to deliver a result that can be interpreted as the quan-
tile of a belief is if preferences over acts or objective lotteries are not monotone. For example,
if a participant is indifferent between a 75% chance of $10 and $10 if the random variable
is below 250, but also indifferent between a 50% chance of $10 and $10 if the random vari-
able is below 300, then it is hard to interpret either of these indifferences as generated by
a coherent belief, since it implies that F would have to be downward sloping. One way to
get preferences like this is if preferences over acts do not respect the monotonicity of events,
so that an act can be preferred to another even if it pays conditional on an event that is a
strict subset of another (such as X ≤ 250 vs X ≤ 300). Another way to obtain preferences like
this is if preferences over objective lotteries are not monotonic in probabilities (for instance,
$10 with 50% chance is preferred to $10 with 75%). On the other hand, if both of these
monotonicity conditions are met, then the indifferences between acts that pay conditional
on larger (in terms of inclusion) events will occur at higher objective probabilities, and thus
these indifferences can be interpreted as belonging to some consistent distribution F. We
refer to this pair of assumptions as the act monotonicity and objective lottery monotonicity
axioms, respectively.

The replacement axiom and the two monotonicity axioms are enough to ensure that we
can use indifferences to identify structure in preferences that can reasonably be interpreted
as the quantiles of an underlying belief distribution. However, to actually find that indif-
ference, we will need one more assumption, which has been latent in the discussion up
until now. When we ask these participants to choose their favorite option from the relevant
pair and incentivize it by randomly implementing one of these choices, how do we know
that their choice in each menu is their favorite? This requires weak structure on the partici-
pant’s preferences over compound lotteries over the types of acts and objective lotteries used
in this procedure. This axiom is known as statewise monotonicity, which is an assumption
required in any experimental economic procedure that asks participants to make multiple
choices and then randomly chooses one to implement (Azrieli et al., 2018).

2.1. Framework

This section makes use of the following notation. The set of outcomes is X = {a,b}.
Throughout, it is assumed a ≻ b. X is a real-valued random variable with state space
Ω. A tail event Ex is an event of the form X ≤ x. Simple lotteries are objective lot-
teries of the form S = (a ◦ p,b ◦ (1− p)), where p ∈ [0,1]. Binary acts are acts of the form
(a◦E,b ◦Ec) where E is an event in X and Ec is the complement of that event. Simple
mixtures are compound lotteries that mix (potentially) objective and subjective risk of the
form M = (L1 ◦ p1,L2 ◦ p2, ...,Ln ◦ pn) where pi ∈ [0,1] with

∑n
i=1 pi = 1, and each L i is a sim-

ple lottery or a binary act. The set of all simple mixtures is M .

A Quantile price list is a probability p (the quantile to be elicited), along with a se-
quence of n values (x1, ..., xn) with xi > xi+1. The range of the quantile price list is [xn, x1].
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The price list is constructed by pairing a constant objective lottery op = (a◦ p,b ◦1− p) with
a sequence of increasing binary acts Axi = a◦Exi ,b◦Ec

xi
(recall that tail events Exi are events

X < xi) to create n menus of the form
{
oq, Axi

}
. To implement the price list, participants are

asked to choose either the lottery or the act from each menu. A menu is randomly chosen
(according to any fixed distribution), and the participant is rewarded with the lottery chosen
from that menu.

Assume participants have preference relation ≿ over M that is complete, transitive, and
also meets the additional axioms below, then participants behave "as-if" their preferences
are generated by a well-formed subjective distribution F, and that quantiles of this subjec-
tive belief are revealed by switching-points in their choices from a quantile price list.

Axiom (1): Objective Lottery Monotonicity:
For a ≻ b, p ≥ p′ ⇔ (a◦ p,b ◦1− p)≿

(
a◦ p′,b ◦1− p′).

Axiom (2): Act Monotonicity:
For a ≻ b, E′ ⊆ E ⇒ (a◦E,b ◦Ec)≿

(
a◦E′,b ◦E′c).

Axiom (3): Continuity:
∀E ∈Ω, ∃p ∈ [0,1] : (a◦E,b ◦Ec)∼ (a◦ p,b ◦1− p).

Axiom (4): Replacement
For all a,a′,b,b′: (a◦E,b ◦Ec)∼ (a◦ p,b ◦1− p)⇔(
a′ ◦E,b′ ◦Ec)∼ (

a′ ◦ p,b′ ◦1− p
)

Axiom (5): Statewise Monotonicity
L∗

i ≻ L i ⇔
(
L1 ◦ p1, ...,L∗

i ◦ pi, ...,Ln ◦ pn
)≻ (L1 ◦ p1, ...,L i ◦ pi, ...,Ln ◦ pn)

2.2. Belief Consistency

In this section, we demonstrate that under objective lottery monotonicity, act monotonicity,
continuity, and replacement, participants behave "as-if" their preferences are generated by
a well-formed subjective distribution F.

Proposition 1. Under axioms 1-4, there exists a unique CDF function F (invariant to the
choice of a and b) that solves

(
a◦F(x),b ◦1−F(x)

)
∼ (

a◦Ex,b ◦Ec
x
)

.

Proof. By continuity, for any x there exists a probability F(x) ∈ [0,1] that solves:

(1)
(
a◦F(x),b ◦1−F(x)

)
∼ (

a◦Ex,b ◦Ec
x
)

By replacement F(x) is invariant to the choices of a and b. We now prove that F is a CDF.
We start by showing that the range of F is [0,1]:

(2) lim
x→∞(a◦Ex,b ◦Ec

x)= (a◦Ω,b ◦;)= a = (a◦1,b ◦0)

Thus, l imx→∞F(x)= 1.

(3) lim
x→−∞(a◦Ex,b ◦Ec

x)= (a◦;,b ◦Ω)= b = (a◦0,b ◦1)
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Thus, l imx→−∞F(x)= 0.

We now show that F is non-decreasing in x. For x ≥ x′, E′
x ⊂ Ex. By act monotonicity,(

a◦Ex,b ◦Ec
x
)
≿

(
a◦Ex′ ,b ◦Ec

x′

)
. By transitivity and indifference equation 1:

(4)
(
a◦F(x),b ◦1−F(x)

)
≿

(
a◦F(x′),b ◦1−F(x′)

)
By objective lottery monotonicity the preference in Equation 4 is true if and only if F(x) ≥
F(x′). Thus, F(x) is non-decreasing in x. We now show that F(x) is unique. Suppose other-
wise, then for some Ex there exists p, p′ ∈ [0,1] with p ̸= p′ such that:

(5)
(
a◦Ex,b ◦Ec

x
)∼ (a◦ p,b ◦1− p)

(6)
(
a◦Ex,b ◦Ec

x
)∼ (

a◦ p′,b ◦1− p′)
By transitivity,

(
a◦ p′,b ◦1− p′)∼ (a◦ p,b ◦1− p). Without loss of generality, assume p > p′.

By objective lottery monotonicity,
(
a◦ p′,b ◦1− p′) ≻ (a◦ p,b ◦1− p), which contradicts the

previous indifference. Thus, F(x) is unique. □

2.3. Incentive Compatibility

In this section we show that under the addition of statewise monotonicity, if a participant’s
subjective distribution has a quantile within the range of the quantile price list, then the
participant’s choices in the quantile price list will have a switching-point and that switching-
point reveals an interval that must contain a quantile p of the subjective distribution F.
Call xi a switching-point for quantile p if the participant chooses Axi from

{
op, Axi

}
but op

from
{
op, Axi+1

}
. Below, let F(x) be the CDF that solves (a◦F(x),b ◦1−F(x))∼ (

a◦Ex,b ◦Ec
x
)

under the conditions of proposition 1 and let [ql , qh] be the set of p quantiles of F. That is,
the set of values q that solve F(q) ≥ p and F(q) ≤ p. The set of values that solves this must
be an interval since F is increasing.

Proposition 2. Under axiom 5 (statewise monotonicity) if qh < x1 and ql > xn then there is
at least one switching-point xi in the sequence (x1, ..., xn) and for any switching-point, there
is some x in [xi, xi+1] that is a p-th quantile of F.

Proof. Since qh < x1, F (x1) > p. Similarly, since xn < ql , F (xn) < p. By objective lottery
monotonicity:

(7)
(
a◦F (x1) ,b ◦1−F (x1)

)
≻ (a◦ p,b ◦1− p)

(8) (a◦ p,b ◦1− p)≻
(
a◦F(xn),b ◦1−F(xn)

)
Since F(x) is the CDF that solves

(
a◦F(x),b◦1−F(x)

)
∼ (a◦Ex,b◦Ec

x) under the conditions
of proposition 1, we have the following two conditions:

(9)
(
a◦Ex1 ,b ◦Ec

x1

)≻ (a◦ p,b ◦1− p)

(10) (a◦ p,b ◦1− p)≻ (
a◦Exn ,b ◦Ec

xn

)
Thus, in the the quantile price list, Ax1 is chosen from

{
oq, Ax1

}
and oq is chosen from{

oq, Axn

}
. Thus, there must be some first xi in (x2, ..., xn) such that oq is chosen from
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oq, Axi

}
. xi−1 is a switching-point. We now show that any switching-point provides a range

of values that must contain some p quantile of F.
By statewise monotonicity, the choice of Axi from

{
oq, Axi

}
and oq from

{
oq, Axi+1

}
implies

the following pair of preferences:

(11)
(
a◦Exi ,b ◦Ec

xi

)
≿ (a◦ p,b ◦1− p)

(12)
(
a◦Exi+1 ,b ◦Ec

xi+1

)
≾ (a◦ p,b ◦1− p)

By subject/objective replacement and transitivity, these are true if and only if:

(13)
(
a◦F(xi),b ◦1−F(xi)

)
≿ (a◦ p,b ◦1− p)

(14)
(
a◦F(xi−1),b ◦1−F(xi−1)

)
≾ (a◦ p,b ◦1− p)

By objective lottery monotonicity this pair of preference inequalities is true if and only if:

(15) F (xi)≥ p ≥ F (xi−1)

If the left inequality is weak, then F(xi) = p and so xi is a p-th quantile of F. Similarly,
if the right inequality is weak, then xi−1 is a p-th quantile of F. If both are strict, then
F (xi) > p > F (xi−1) since F is increasing, there is some smallest x ∈ [xi−1, xi] such that
F(x)> p. This point is a p-th quantile of F.

□

2.4. Approximating Beliefs via Maximum Entropy

Our procedure allows researchers to collect any set of quantiles. These quantiles can be
interpreted as points on the CDF of the participant’s underlying subjective belief distribu-
tion, or more precisely, as intervals where these points must lie. However, we envision that
researchers may want to extrapolate from the information collected by our methodology to
calculate unobserved properties of these distributions (such as moments or unelicited quan-
tiles).

Researchers often have parametric assumptions in mind that would allow them to con-
struct a distribution from the elicited information or use a methodology like maximum like-
lihood to estimate the best-fitting parameters/distribution. Since these assumptions and
procedures would depend on the particular research questions being studied, we will not
elaborate on them here. Instead, in this section, we offer a procedure to approximate the
entire distribution of subjective beliefs in a non-parametric way using only the information
provided by our methodology.

To do this, we apply the principle of maximum entropy.2 The principle of maximum en-
tropy is closely related to the principle of insufficient reason. A distribution that maximizes
entropy subject to constraints is the distribution that is least informative beyond the in-
formation encoded by those constraints. More informally, the process determines which

2The principle of maximum entropy was first formalized in Jaynes (1957a,b). We are unaware of the use of
maximum entropy in a similar context (estimating a subjective belief distribution), but the principle has been
used for inference elsewhere in economics (see Scharfenaker and Yang (2020) for a review) and in models of
decision-making (see Kirman et al. (2023) for a recent example).
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distribution uses known information and only the known information.3

2.5. Characterization of the Maximum Entropy Approximation

Suppose that a random variable X is known to be continuously distributed on
[
q, q

]
. Fur-

thermore, there are n quantile values {qp1 , qp2 , ..., qpn} associated with the probabilities
{p1, p2, ..., pn} with each quantile value qpi constrained to be within an interval:

[
lpi ,hpi

]
.

Without loss of generality, assume pi > pi−1. For convenience, let p0 = 0 and pn+1 = 1.
The fact that the distribution has support

[
q, q

]
can be represented by lp0 = hp0 = q and

lpn = hpn = q. The other values of lpi ,hpi are determined by our elicitation methodology.

We wish to find the distribution F̃ and the associated density f̃ that maximizes the en-
tropy function h( f ) = ∫ q

q − f (x)ln( f (x))dx subject to the n restrictions lp1 ≤ qpi ≤ hpi . These
constraints can be interpreted geometrically to restrict F to be in the set of all increasing
functions from

[
q, q

]
to [0,1] that pass through the horizontal line segments represented by

each pair [lpi ,hpi ]. This is shown in figure I.

FIGURE I. Constraints represented elicited quantile intervals.

3We note that the principle of insufficient reason might be applied at a higher level, directly to the researchers
knowledge of the participant’s potential subjective belief, and instead propose that all potential subjective
distributions be treated equally. However, since application yields a distribution over distributions rather
than a distribution, which is our goal, we sidestep the issue and apply maximum entropy to the subjective
distribution itself.
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Of course, the maximum entropy distribution must have some value for each qpi . Propo-
sition 3 shows that between these points, whatever they are, the maximum entropy distri-
bution F̃ is a simple piecewise linear interpolation of the quantiles qpi . If the quantiles
were known exactly, rather than constrained to be within some interval, this would be a
full characterization of the maximum entropy distribution. An example of this is shown in
Figure II for known quantiles {q0.25, q0.50, q0.75}.

FIGURE II. Maximum Entropy CDF with known quantiles at 25%,50%,75%.

Proposition 3. The distribution F̃ over the range [q, q] that maximizes entropy subject to
quantile restrictions {qp1 , qp2 , ..., qpn} is a piecewise linear CDF connecting the points((

q,0
)
,
(
qp1 , p1

)
,
(
qp1 , p1

)
,
(
qp2 , p2

)
, ...,

(
qpn , pn

)
,
(
q,1

))
.

Proof. The CDF must contain the points
{(

q,0
)
,
(
qp1 , p1

)
,
(
qp1 , p1

)
,
(
qp2 , p2

)
, ...,

(
qpn , pn

)
,
(
q,1

)}
by the constraints. To show that F is piecewise linear on the intervals between these points,
it is sufficient to show that f is constant on these intervals. The range and quantile restric-
tions can be written as follows:

(16)
∫ q

q
f (x)dx = 1,

∫ qp1

q
f (x)dx = p1,

∫ qp2

qp1

f (x)dx = p2 − p1, ...,
∫ q

qpn

f (x)dx = 1− pn

By Theorem 12.1.1 of Cover and Thomas (2006), the f that maximizes the entropy function
h( f )= ∫ q

q − f (x)ln( f (x))dx has the following form:

(17) f (x)= eλ0−1+∑n+1
i=1 λi Ix∈(qpi−1 ,qpi ]
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We can solve for λi i ∈ [1,n+1] using this form and the restrictions above. For each of those
restrictions, we have:

(18)
∫ qpi

qpi−1

eλ0−1eλi dx = pi − pi−1

This simplifies to:

(19) λi = ln
(

pi − pi−1

qpi − qpi−1

)
− (λ0 −1)

Plugging these back into the distribution, eliminating the term λ0 −1, and simplifying the
resulting expression yields:

(20) f (x)=
n+1∑
i=1

(
pi − pi−1

qpi − qpi−1

)
Ix∈(qpi−1 ,qpi ]

Thus, f (x) is constant on every interval [qpi , qpi+1], completing the proof. □

Notice that proposition 3 does not fully characterize the maximum entropy distribution
subject to the quantile intervals elicited by our methodology. However, it greatly simpli-
fies the problem of finding this distribution. Although maximizing entropy in general is
an infinite-dimensional optimization problem, proposition 3 simplifies the problem to one of
finding the values of qp2 , ..., qpn−1 for which F constructed from the piecewise linear inter-

polation of the points
((

q,0
)
,
(
qp1 , p1

)
,
(
qp1 , p1

)
,
(
qp2 , p2

)
, ...,

(
qpn , pn

)
,
(
q,1

))
maximizes the

entropy function h( f )= ∫ q
q − f (x)ln( f (x))dx.

The problem can be solved efficiently with generic nonlinear optimization packages. Fig-
ure III shows the maximum entropy distribution subject to the quantile intervals shown
in Figure I. In this case, q0.25 and q0.50 are maximized at corner solutions, while q0.75 is
maximized at an interior. The first-order conditions on each quantile ensure that whenever
the maximum entropy function involves an interior solution for some quantile, the density
is constant and equal on both sides of that quantile and therefore F̃ does not have a kink at
that quantile.
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FIGURE III. Maximum Entropy CDF from elicited quantile intervals at
0.25,0.50,0.75.

2.6. Approximating Moments

Once we have approximated beliefs using the maximum entropy distribution F̃, it is possible
to estimate properties of a belief that have not been observed. As an example, suppose that
we want to calculate the belief about the mean of X . This can be done using the CDF
and the fact that E(X ) = ∫ ∞

−∞1−F(x)dx or using the approximate density f̃ which has the
density pi−pi−1

qpi−qpi−1
in each interval. Thus, the mean of the approximated distribution can be

calculated by the following sum.

∫ qp1

q
x

(
p1

qp1 − q

)
dx+

∫ qp2

qp1

x
(

p2 − p1

qp2 − qp1

)
dx+ ...

+
∫ qpn

qpn−1

x
(

pn − pn−1

qpn − qpn−1

)
dx+

∫ q

qpn

x
(

1− pn

q− qpn

)
dx

(21)

As an example, suppose we have quantiles q0.25, q0.50, and q0.75. This sum simplifies to:∑n+1
i=1

1
8 (qi +qi−1). This provides the following expression for µ̃ in terms of a,b and the quan-

tiles:

(22) µ̃= 1
8

(
q+ q

)
+ 1

4
(q0.25 + q0.50 + q0.75)



12 LEO & STELNICKI

3. COMPARISON TO OTHER METHODOLOGIES

The choice of methodology to elicit subjective beliefs involves two main decisions: what
to elicit and how to elicit it. It is possible to elicit any aspect of beliefs (Lambert et al.,
2008).4 The decision of what to elicit ultimately depends on the information required by the
research question. We propose eliciting quantiles as a flexible way to gather information
about a real-valued distribution when the required information is about the distribution
itself rather than about the probabilities of particular events. For example, if a researcher
wants to know the probability that a participant believes the value of a random variable
is greater than some fixed quantity, eliciting a probability is appropriate. If a researcher
wants to know the values that a participant believes are in the upper and lower 5% tails of
a distribution, then quantiles are more appropriate.5

It is also possible to elicit moments of a real-valued subjective distribution. However, in
contrast to quantiles, moments are not a fundamental part of a distribution but are derived
from it. Furthermore, moments may not exist for certain extreme distributions. More practi-
cally, because moments are not event-based but rather a summary of the entire distribution,
the incentives involved in eliciting moments are more complex than those for eliciting quan-
tiles. This also makes them harder to communicate to participants when researchers want
to tell participants exactly what they are eliciting.

Moments, unlike quantiles, cannot always be elicited in isolation. For example, it is im-
possible to elicit the variance of a subjective distribution without learning about the mean
(Lambert et al., 2008). Finally, information about moments can be approximated without
parametric assumptions given information about quantiles, but the reverse is not true. For
these reasons, we believe that it is almost always more appropriate to elicit quantiles rather
than moments when research questions depend on information about real-valued subjective
distributions.

For research questions that specifically require the elicitation of moments and where the
researcher is not satisfied with estimating these from the elicited quantiles, scoring rules
can be used. Scoring rules are a flexible way to elicit quantities of a distribution. Partici-
pants provide their estimate of the target value, such as the mean, which is then compared
to the truth or a sample from the true distribution. It is possible to tailor the scoring rules
to elicit a wide range of information about a distribution (Gneiting and Raftery, 2007; Lam-
bert, 2019). In experimental economics, it is common to “binarize” scoring rules to eliminate
the effect of risk preferences on biasing elicited beliefs. In binarized scoring rules, the prob-
ability of a reward, rather than the value of the reward, changes with the accuracy of the
reported beliefs (Savage, 1971; Hossain and Okui, 2013; Harrison et al., 2014).

4Not all aspects can be elicited directly and must either be inferred through directly elicited quantities or
elicited along with other quantities used in their calculation.
5When a research question involves eliciting probabilities of specific events, scoring rules for probabilities or
price list methods can be used. We note that these methods can also be used to provide a comprehensive view
of a belief distribution by eliciting probabilities throughout the range of the random variable. This is akin to
eliciting the PDF rather than the CDF of a distribution. This may provide a reasonable and simple alternative
to eliciting several quantiles when general information about a distribution is required.
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Researchers convinced by our arguments on eliciting quantiles may still be skeptical that
eliciting quantiles using price lists is the best solution. Like moments and probabilities,
quantiles can also be elicited using scoring rules. However, unlike our price list methodol-
ogy, scoring rules require participants to provide their beliefs about the target quantities di-
rectly. This may be more cumbersome for participants since the scoring rules do not provide
any guidance on how to discover these values. For example, Eyting and Schmidt (2021) pro-
pose eliciting quantiles with the following language (in this case, to elicit the 0.75 quantile):
"What do you say is X if underestimation is four times more costly than overestimation?"
Although this is incentive compatible, participants are left to determine how to arrive at X
that maximizes their utility under this rule. Even if researchers tell participants what they
are eliciting, such as in Dustan et al. (2022), who tell participants their incentives are de-
signed to elicit the median of their belief, participants must still arrive at what their belief
about the median is without any direction. In contrast, our price list methodology lever-
ages the event-based nature of a quantile and allows participants to “discover” their belief
through a series of simpler questions about event probabilities.

In conclusion, we believe that eliciting quantiles with price lists is a simple, intuitive,
and practical approach, especially when the research focus is on understanding particular
aspects of participants’ real-valued subjective belief distributions. The flexibility of quantile
elicitation, in contrast to the complexities and limitations associated with moments, makes
it a superior choice in most research scenarios. Furthermore, the use of price list method-
ologies, as opposed to more complex scoring rules, further simplifies the elicitation process,
making it more accessible to participants in complex scenarios. These benefits highlight the
potential “behavioral incentive compatibility” of our methodology in addition to the theoret-
ical incentive compatibility (Danz et al., 2022).

4. EXPERIMENTAL DESIGN

The purpose of this experiment is to demonstrate one possible application of our methodol-
ogy and simultaneously investigate how subjective belief distributions are affected by elic-
iting both quantiles and mean of the distribution.

The event that participants considered in our experiment is whether individuals pass or
fail a math task. Before the experiment, 20 Ohio State students completed a math task.
Each student was shown a sequence of five two-digit numbers. Students had ten minutes to
correctly calculate the sum of as many of these sets of two-digit numbers as they could. For
each correctly answered math problem, they received $1. The students also received a $5
show-up fee. The performance of these students on the math task is the basis of the main
experiment.

We categorized each of the 20 students according to how many math problems they cor-
rectly answered. If a student correctly answered at least 13 math problems, we categorized
them as successful in the math task. If they answered any number less than thirteen of
the math problems correctly, we categorized them as failing the math task. All students
who participated in the math task knew that their answers would be seen later by other
participants but did not know about the categorization of success. We chose not to disclose
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the categorization to the students in order to not change their performance goal on the task.

For the main experiment, we used the performance of the 20 students on the math task
as our subjective event of interest. Participants in the main experiment were also recruited
through and participated in the experiment at the Ohio State Experimental Economics Lab-
oratory. Anyone who participated in the previous math task was excluded from participation
in the experiment. We chose to do both the math task and the experiment in person at the
Ohio State laboratory so that the participants in the experiment would have some baseline
facts they could use to form beliefs over the students’ performance in the math task. Perfor-
mance in the math task is a subjective event because before knowing the actual results, the
participants in the experiment cannot find the correct answer, and there is no way to look
up the results. Furthermore, we wanted participants to be able to form their beliefs about
math task performance using facts they knew so that their beliefs were not completely un-
informed. Information like how well students did in their math classes or how smart they
believe the general population of the university to be are facts that can be used by our par-
ticipants to form their beliefs about other students’ performances on the prior math task.

The participants were first told about the math task and given an example of the math
problems. The participants then told us their beliefs about the students’ performance on
the math task. Their beliefs were elicited through their switching-points on four separate
Multiple Price Lists (MPLs). Three of the four MPLs were quantile price lists targeted at
the 0.25, 0.50, and 0.75 quantiles of their beliefs. The fourth MPL elicited the mean of
their subjective belief distribution via the probability a randomly chosen student passed.
This MPL is not part of our methodology. Instead, it is based on a popular methodology for
eliciting subjective probabilities first introduced by Holt and Smith (2016). Each Multiple
Price List consisted of 21 rows. In each row, there were two options, Option A and Option B.
Participants decided which of the two options they preferred in each row.

In each of the quantile elicitations, participants were asked how many students they be-
lieved had succeeded in the math task. The right-hand side of each quantile price list, or
Option B, was constant. For the 0.25 quantile, Option B was “Win $10 with a 25% chance"
in each row. For the 0.5 quantile, Option B was “Win $10 with a 50% chance" in each row.
And for the 0.75 quantile, Option B was “Win $10 with a 75% chance" in each row. The
left-hand side, or Option A, of all three quantile price lists were identical. Option A was
changed in each row. Option A in the first row of all three lists was “Win $10 if ≤ 20 people
succeeded in the math task.” In each row, the number of people who succeeded in the math
task decreased by 1 down to "Win $10 if 0 people succeeded in the math task" in the 21st
row. An example of the 0.25 quantile price list is shown in Figure IV.

The switching-point of each of these lists elicits a value of different points along a partic-
ipant’s belief distribution. From the three quantile price lists, we get bounds on the 0.25,
0.5, and 0.75 quantiles of each participant’s belief distribution. These three quantiles allow
us to build a approximation of each participant’s entire subjective belief distribution using
our maximum entropy methodology. In all MPLs, a single switching-point was enforced.
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FIGURE IV. MPL that elicits the 0.25 quantile.

The fourth MPL elicited participants’ beliefs about the probability that a randomly chosen
student passed the math task. The right-hand side of this list, or Option B, was constant
across all rows: “Win $10 if one randomly selected person succeeded on the math task." The
left-hand side, or Option A, changed in each row. Option A in the first row was “Win $10
with 100% chance." In each row, the probability that participants received $10 in Option A
decreased by 5% down to "Win $10 with 0% chance" in the 21st row. The exact MPL used is
shown in Figure V.

Participants were randomly assigned to one of two treatments that only differed in the
order of the four MPLs. In the mean-first treatment, the mean eliciting MPL was shown
first. In the mean-last treatment, the three quantile price lists were shown first. In both
treatments, the order of the three quantile price lists was randomized at the participant
level.

One of the four MPLs was randomly chosen to determine payment. For the randomly cho-
sen MPL, a row was then randomly chosen. The participant’s choice in that row was used
to determine final payment. If the chosen option was winning $10 with a certain probability
(Option B for quantile price list and Option A for mean MPL), a 100-sided die was rolled.
If the number on the die was lower than or equal to the probability stated in that row, the
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FIGURE V. MPL that elicits probability a randomly chosen participant
passed the math task.

participant won $10. If the chosen option was winning $10 dependent on how students per-
formed in the math task (Option A for quantile price lists and Option B for mean MPL), the
actual performance of the students was used to determine payment. For the three quantile
price lists, if the number of participants who actually succeeded was less than or equal to
the number stated in the row, participants won $10. For the mean MPL, a student was
randomly chosen from the math task. If this student succeeded, participants won $10.

The experimental design not only tests the methodology proposed in this paper, but also
allows us to test whether answering the quantile price lists helped participants “discover”
their subjective distribution. Using the two treatments, we can determine whether report-
ing mean belief before or after quantile beliefs allowed for more consistency across the four
elicitations. Additionally, we test whether the order of the MPLs made participants’ belief
distributions “more binomial”. These are just some possible applications of the methodology
that we find particularly interesting, but much more could be done using it.

All sessions were recruited through and run at the Experimental Economics Laboratory
at The Ohio State University. Twenty students participated in the math task. Each student
received a $5.00 show-up fee and $1.00 for every question answered. The math sessions
took approximately 15 minutes and the average payment was $7.40. 158 participants were
recruited for the main experiment. 71 participants were randomly assigned to mean-first
and 87 participants were randomly assigned to mean-last. The experiment took 10 minutes
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and the participants received a $5.00 show-up fee plus average payment of $3.29.

5. RESULTS

As our main motivation of the experiment is to demonstrate our methodology, we first re-
port results for the three quantile price lists. As twenty students participated in the math
task participant’s beliefs are bounded between 0 and 20. In order for our methodology to
work appropriately, the quantile beliefs of the participants must be monotonic. This means
that the number of students participants believe passed at the 0.25 quantile must be less
than or equal to the 0.50 quantile, which must be less than or equal to the 0.75 quantile.
These restrictions ensure an increasing approximated cumulative distribution function. We
exclude participants who do not have monotonic beliefs from all analyses.

73% of the participants have monotonic beliefs. Participants in the mean-first or mean-
last treatment do not exhibit differences in whether their beliefs are monotonic. 69.01%
of the mean-first and 75.86% of the mean-last participants have monotonic beliefs. A chi-
squared test for the difference of these proportions is not significant with a p-value of 0.3360.
It does not seem that allowing participants to report their mean first or last changes their
ability to report beliefs that are consistent with an increasing subjective CDF.

Next, we show the actual beliefs the participants reported for each of the quantile price
lists. A switching-point provides a range of possible beliefs. In our quantile price lists, the
difference between each row is 1 student. Thus, a switching-point in the 10th row repre-
sents a range of 10-11 for the relevant quantile. Instead of plotting the full range, we have
chosen a single point within the range to represent the beliefs of the participants. The be-
lief chosen is the point in the range that maximizes the entropy of the CDF approximation.
6 Figure VI shows a summary of the beliefs of all participants for each elicited quantile.
The shaded region provides a 50% probability interval for approximated CDFs. Put another
way, for any quantile, 50% of participants’ approximated CDFs fall within the shaded region.

6As our ranges are quite small, the choice of what point to use does not have a big impact on our results. Using
the midpoint or upper/lower bounds of this range does not result in notable differences in this analysis.
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FIGURE VI. Box plots of each of the elicited quantile price lists. The shaded
region represents CDFs approximated for the aggregate data.

The 50% probability region for each quantile is quite distinct, with very little overlap be-
tween the three elicited quantiles. There is a substantial amount of consistency, especially
at the aggregate level. Furthermore, only 4% of the participants have the same switching-
point in all three quantile price lists. This further supports the existence of an underlying
distribution over this domain rather than a point-precise belief. Interestingly, the 0.75 quan-
tile has a tighter range than the other quantiles. Most of the participants have a belief in
the range of 14 to 16 for the 0.75 quantile. The interquartile ranges of beliefs elicited for the
other two quantiles are double this size, with much wider whiskers.

Using the participants’ reported beliefs, their entire subjective belief distributions about
the performance of students on the math task are approximated using Proposition 3. An
example (in this case for participant number 3) of an approximated CDF using our method-
ology is shown in Figure VII.
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FIGURE VII. Participant 3’s approximated subjective belief distribution us-
ing the quantile price lists.

Using this approximation, we can recover different moments of the distribution. Here, we
focus on the mean. After finding the mean from the approximated CDFs, we determine how
the directly elicited means differ from these approximated means.

The directly elicited means are determined from the mean MPL by assuming that par-
ticipants believe that student performances are independent. Under this assumption, the
mean number of students who pass is twenty times the probability a randomly chosen stu-
dent passes. We call this the elicited mean. The approximated mean is instead calculated
from the approximated subjective belief distributions using equation (18). Figure VIII shows
a histogram of the difference between the elicited mean and approximated mean for each
participant in the two treatments.
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FIGURE VIII. Distance of elicited mean from approximated mean for each
participant by treatment.

We find that the elicited means and the approximated means are not too different at the
aggregate level. For the mean-first treatment, the average difference is -1.71 and for the
mean-last treatment, the average difference is -0.92. The participant’s elicited means are
on average slightly lower than the approximated means, although a Wilcoxon rank-sum test
for the differences in these distributions finds no significant difference (p-value 0.5526). The
mean-first treatment, where the mean MPL is answered prior to the quantiles, is skewed
slightly left compared to the mean-last treatment. This provides weak evidence that elicit-
ing means after quantiles leads to greater consistency with approximated CDFs.

In addition to the estimation of moments, we can also use our methodology to test hy-
potheses about how participants form their beliefs. For instance, assuming that partici-
pants view the performance of each student on the math task as independent and have a
point belief about the probability that a randomly chosen student passed, the distribution
for the number who passed is binomial. However, if participants have higher-level uncer-
tainty about the probability that a randomly chosen student will pass, the approximated
CDFs would be flatter than the binomial distribution.7

Using our data, we can compare the approximated CDFs of each participant with the
induced binomial distributions using the reported beliefs about the probability a randomly
chosen student passed. An example comparing the approximated CDF with the induced
binomial CDF is shown in Figure VII.

To compare the relative flatness of the approximated CDF with the induced binomial
distributions, we compare the 0.25 and 0.75 quantiles of the two distributions for each par-
ticipant. Figure IX shows the histograms of these differences.

7For instance, if participant has a beta-distributed belief about the probability a randomly chosen student
passed, then their belief about the number of students who passed would have a beta-binomial distribution.
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FIGURE IX. Differences between the approximated CDF 0.25 and 0.75 quan-
tiles and the respective induced binomial 0.25 and 0.75 quantiles for each
participant.

We find that the 0.25 quantile is below and the 0.75 quantile is above the binomial base-
line for 44% of the participants, indicating a strong tendency for participants to have "flat-
ter" distributions than can be explained by a binomial belief about the number of students
who pass. This pattern also holds between treatments. For both mean-first and mean-last,
we find that differences in the elicited 0.25 and 0.75 quantiles from the binomial distribu-
tion are indicative of participants having underlying distributions that are not binomial in
nature. There is no significant difference in the differences of the 0.25 quantile or the 0.75
quantile between treatments.8

To additionally test the difference between the induced binomial distributions and the
approximated distributions, we can look at the distance between the binomial CDF and the
approximated CDF. To measure this distance, we numerically integrate the squared differ-
ence between the distributions over the domain [0,20]. If the approximated CDFs are close
to binomial, the distance between the binomial CDF and the approximated CDF will be
close to 0. For reference, a perfectly linear approximated CDF with the three elicited quan-
tiles at 5, 10, 15 respectively, is distance 13.2592 from a binomial distribution with mean 10.

We do not find evidence that the timing of the mean MPL affects our distance measure be-
tween the approximated and induced binomial distributions.9 Figure X shows a histogram
of this distance measure for each participant (pooled treatments).

8Wilcoxon rank-sum test result in p-values of 0.5394 and 0.5621 respectively.
9Wilcoxon rank-sum test for the difference in these distributions has a p-value of 0.3113.
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FIGURE X. Distance between the approximated CDF and the respective bi-
nomial CDF for each subject (pooled treatments).

We find that the the majority of participants have a distance between their approximated
and induced binomial distributions that is less than 35. Additionally, we find a large spike
between 10 and 14, suggesting that the approximated CDFs are close to linear.10 This would
suggest that instead of binomial distributions underlying beliefs, participants have flatter,
more linear distributions. This is consistent with participants having higher-level uncer-
tainty about the difficulty of the math task.

Together, these results show that eliciting just a mean belief may not be sufficient to
understand the entire subjective CDF. Ultimately, eliciting different quantiles of the belief
distribution gives a fuller understanding of the participant’s beliefs, and we hope our anal-
ysis and discussion in this section demonstrates how our methodology can help researchers
peer deeper into the minds of participants.

6. DISCUSSION

In this paper, we propose a robust and straightforward methodology for eliciting subjective
real-valued beliefs. Our methodology allows practitioners to pin-point aspects of beliefs that
are relevant to their research question and to build a picture of participants entire belief
distributions by eliciting several quantiles.

Given the flexibility of this methodology, there are potential applications in many areas of
economics. One potential application is to obtain the tails of a belief distribution. In many
situations, models predict similar central-tendencies but large differences in tails. Using our
methodology, the tails of the distributions can be easily elicited to test hypotheses generated
from models of this type. For example, beliefs about men and women are often compared on

10Although only 6% of participants have perfectly linear beliefs.
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average, where important differences may be in terms of the shape or variances of distribu-
tions. The greater male variability hypothesis suggests that men are often more variable
across traits than women (Thöni and Volk, 2021; Thöni et al., 2021). Since variance (as a
moment) is not elicitable on its own (see Lambert et al. (2008)), our methodology likely rep-
resents the simplest way to test hypotheses in terms of beliefs about this type of difference.

Another potential application is to obtain richer beliefs that can be used for forecast-
ing. For example, two experts might have beliefs about future inflation that are similar in
terms of their mean but significantly different in terms of shape. Our methodology allows
researchers to capture the full knowledge and uncertainty of experts on important indica-
tors. Similarly, the potential of extreme events often drives decision-making in agriculture
and insurance, and our methodology allows researchers to easily learn about beliefs about
extremes by focusing on quantiles in the tail.
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