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I. INTRODUCTION

Imagine a researcher who wants to study a model of choice under risk. In some cases, the
researcher may want to classify subjects into types based on their risk aversion parameter
under the assumption that their preferences are consistent with some model such as con-
stant relative risk aversion (CRRA). To do this, the researcher offers subjects a variety of
menus of lotteries and identifies their risk parameters based on the observed choices.

In other cases, the researcher might want to test the model, for example, by looking to
see whether subjects’ choices are consistent with maximizing a CRRA preference. Here, the
risk aversion parameters are not of interest; the researcher only cares if the CRRA model is
an accurate description of their choices.

Both of these goals can be accomplished by observing subjects’ entire preference ordering
over the relevant lotteries, for example by observing choices over all possible pairs of lotter-
ies. Once a subject’s entire ranking is known, the researcher can either classify their CRRA
parameter or say whether or not their preferences are consistent with the CRRA model.

But field data are rarely rich enough to allow such precise inference, and in the laboratory
asking subjects to make that many choices would be prohibitively time consuming. And, for
most models, learning the entire preference ordering is unnecessary; subjects can often be
classified—and models can be tested—with far less information.

In this paper, we ask for any given model of (rational, deterministic) preferences: What
are the sets of choice data/experiments that classify subjects within that model or test the
model?1 Our main results are characterizations of experiments (or, more generally, choice
datasets) that successfully classify subjects within a model, test the model, or both. These
characterizations involve a novel graph-theoretic construction: the labeled permutohedron.
This provides insights into how choice data relates to the identification and testing of mod-
els.

Given this characterization, the researcher can then identify the optimal experiment to
run from among those that successfully classify or test the model. For example, they may
wish to run an experiment that has the fewest choices or has the lowest expected cost. We
provide an algorithm for solving this optimization problem along with examples of such
“minimal” experiments in Section VIII.

Our characterization is based on the permutohedron, a graph whose vertices correspond
to all possible strict rankings of a set of choice objects. Two rankings are connected by an
edge if they differ by only one transposition of adjacent objects in the ranking. The labeled

1A model can consist of a collection of several axioms, such as Savage’s subjective expected utility theory, or
each axiom on its own could be viewed as a separate model. Or it may not be axiomatic at all. We only
require that the model assumes subjects’ choices are deterministic and consistent with a complete, reflexive,
transitive, and antisymmetric ranking over a finite number of alternatives.
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permutohedron augments this by labeling each edge with those menus from which the con-
nected rankings choose differently; see Figure I for an example with three choice objects.
The use of (unlabeled) permutohedra to visualize the possible rankings of objects dates back
to at least Guilbaud and Rosenstiehl (1963) and seems to have been independently discov-
ered by Kemeny (1959) and Schulman (1979), among others. The mathematics of permu-
tations has roots in Hardy et al. (1934). The mathematical structure of the permutohedron
was described by Gaiha and Gupta (1977), and Yu et al. (2019) survey various methods of
illustrating rankings, measuring the distance between them, testing various features of a
collection of rankings, and aggregating multiple rankings.

Our framework assumes that subjects have a well-defined deterministic preference re-
lation over a finite set of alternatives and that choices from a menu are always consistent
with that ranking. A model is simply a partition of the set of all possible rankings. Although
this can accommodate many behavioral biases such as violations of stochastic dominance,
failures of contingent reasoning, or other-regarding preferences, it does not allow for irra-
tional choice patterns such as those that violate transitivity or the weak axiom of revealed
preference. Our framework can handle stochastic choice, but only in a very limited way: If
the choice objects themselves are lotteries over alternatives and if stochastic choice is con-
sistent with maximizing some preference ordering over lotteries, then our framework can
apply. Most stochastic choice models, however, do not fit this paradigm and therefore are
beyond the scope of this paper.2 In the Discussion section, however, we discuss how one
could use our framework to identify whether subjects’ choice are stochastic, even if it cannot
be used to test or classify models of stochastic choice.

Finally, we assume strict preferences for two reasons: First, the literature on incentive
compatible experiments with weak preferences is not well developed; see Azrieli et al. (2018)
for a discussion. Second, we focus on choice-from-sets experiments, which cannot distin-
guish between strict and weak preferences, and thus would not be useful in perfectly clas-
sifying or testing a model that allows for indifference. Extending our analysis to include
indifferences and, therefore, more sophisticated elicitation techniques would be a useful
direction for future work.

Related Research

Our focus in this paper is communicating a new framework for analyzing experimental
design. We believe this work provides the first steps in establishing experimental design as

2Indeed, when choice is stochastic it’s not even obvious how to define incentive compatibility of an experiment
(meaning, whether it reveals the underlying stochastic choice function truthfully), or what experiments could
be used to perfectly identify their stochastic choice function. Furthermore, our techniques would likely not ap-
ply since the space of possible preferences is finite—and can therefore be represented via the permutohedron—
but the space of possible stochastic choice functions is uncountable, even when the number of objects is finite.
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a formal theoretical problem. Specifically, our paper studies the problem of using limited
choice data to test and classify models. A similar vein of literature focuses on “completing”
rankings that arise from incomplete choice data. This often involves “fuzzy” preferences,
which give not only a ranking but also an intensity (Alonso et al., 2008; Chiclana et al.,
2009). Similarly, the conjoint analysis literature (Luce and Tukey, 1964; Green and Rao,
1971; Green and Srinivasan, 1978) aims to estimate preferences from surveys when choice
objects have well-defined attributes. In contrast, we use the permutohedron to understand
how choices from various menus help identify which preferences are consistent with those
choices and therefore how to use experiments to classify subjects into types (defined as sets
of preferences) based on their choices.

In Section VIII, we also discuss how our results can be leveraged to find minimal experi-
ments which use the fewest choices to test or classify a model. There is a large literature in
statistics on the optimal design of experiments under various criteria, where an experiment
is used to help estimate the parameter of some data generating process. That literature
largely assumes the parameters to be real-valued, such as the slope and intercept of a lin-
ear regression (Kiefer, 1959; Atwood, 1969; Smucker et al., 2018; Pukelsheim, 2006). In our
setting the parameter of interest is a categorization of the subject’s true preference order-
ing, which is not real-valued; to our knowledge this literature has not yet studied such a
scenario.

Outline

In Section II, we demonstrate the framework and key results of our paper through several
simple examples. Most of the intuition behind our characterizations is present in these ex-
amples. In Sections III–V we provide our formal framework, which extends that of Azrieli
et al. (2021), and state our main characterizations. In Section VI we extend our results
further by showing how they apply to experiments where subjects can choose more than
one option from a given menu. In Section VII we explore additional properties of the per-
mutohedron that might be useful in future work. In Section VIII we discuss a practical
application of our results: finding experiments that test / classify a model using the fewest
choices. Section IX concludes with future directions and applications of our approach.

II. ILLUSTRATIVE EXAMPLES

In an early economic experiment, Rousseas and Hart (1951) asked subjects to rank three
plates of eggs and bacon. To construct indifference curves from their data, the authors
made several assumptions about preferences, including monotonicity and convexity. We can
consider each assumption to be a separate model of preferences. In this section, we begin



EXPERIMENTS 5

by demonstrating how our methods can be used to characterize the experiments that test
and classify various models in this context. Although simple, these examples demonstrate
many of our key results and the general intuition they provide scale to larger, more complex
models.

Model 1: Monotonic Preferences

In the eggs-and-bacon example, each plate can be written as an ordered pair, with the first
entry giving the number of eggs and the second entry the number of pieces of bacon. Suppose
the available options are a = (3,3), b = (1,2), and c = (2,1), and the researcher is interested
in testing monotonicity. This assumption requires a ≻ b and a ≻ c. The (strict) rank order-
ings consistent with monotonicity are abc (meaning a ≻ b ≻ c) and acb (meaning a ≻ c ≻ b),
while the rankings bac, bca, cab, and cba are inconsistent with monotonicity. We can
therefore view monotonicity as a model M in which M = {abc,acb} are the preferences al-
lowable within the model, and the complementary set M0 = {bac,bca, cab, cba} contains the
preferences outside the model.

What experiment could be used to test whether this model is true or not? In other words,
how can we distinguish whether a subject’s preferences are in {abc,acb} or not? Of course,
offering every binary menu D1 = {a,b}, D2 = {a, c}, D3 = {b, c} would completely identify the
subject’s ordering, and therefore would be sufficient to test the model.

How else can we test this model? One way is to offer the subject a menu of all three plates
and ask them to choose one. Formally, the subject is given a single decision problem D1 =
{a,b, c} and chooses their most-preferred item from that menu. If the subject chooses a then
the model is validated; otherwise, it fails. Another option is to use the menus D1 = {a,b},
D2 = {a, c}. If a subject chooses a in both menus, the model is validated; otherwise, it fails.

In fact, any experiment that tests this model must contain the menu {a,b, c} or the pair
{a,b} and {a, c}. Otherwise, there is no guarantee that the experiment will reveal whether
the subject ranks a first. Thus, we have a characterization, an experiment tests this model
if and only if it includes the menu {a,b, c} or includes both menus {a, c} and {a,b}.3

Model 2: Convex Preferences

As a second example, consider the model of (strictly) convex preferences. Suppose now the
plates available are a = (2,2), b = (3,1), and c = (1,3). Since plate a is a convex combination
of the other plates, convexity of preferences requires a to be preferred to the least-preferred
of plates b and c. That is, a cannot be ranked last. The set of rankings meeting this

3The experiment can include additional menus as well, but they are not necessary.
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condition is M = {abc,acb,bac, cab} and the complementary set of rankings outside the
model is M0 = {bca, cba}.

Unlike the monotonicity example, this model cannot be tested using the choice of a fa-
vorite plate from the single menu D1 = {a,b, c}. For example, preference ordering bac is
convex, but bca is not. Yet, two subjects with these preferences make the same choice from
the menu {a,b, c} and are not separated by this experiment.

However, the experiment consisting of the two menus D1 = {a,b} and D2 = {a, c} is suffi-
cient to test the model. If a subject chooses a in at least one menu, the model is validated;
otherwise, it fails. In fact, any experiment that tests this model must contain the two menus
{a,b} and {a, c}. If one of these menus is absent, there is no guarantee that the experiment
will reveal whether the subject ranks a last. An experiment tests this model if and only if it
includes the two menus {a,b} and {a, c}.

Model 3: A General Notion of Types

A model M may further partition the preferences into “types.” For example, suppose the
researcher is also interested in splitting the convex preferences from the last example into
those that most-prefer a, those that most-prefer b, and those that most-prefer c. We formal-
ize this by writing model M as a partition M = {t1, t2, t3}, where t1 = {abc,acb} is the type
that most-prefers a, t2 = {bac} is the type that most-prefers b, and t3 = {cab} is the type that
most-prefers c. Again, M0 = {bca, cba} are the preferences outside the model.4

Interestingly, it is possible to classify subjects into these types and simultaneously test
the model using the same experiment that is sufficient to test the convexity of preferences
for these options: D1 = {a,b} and D2 = {a, c}. Subjects of type t1 will pick (a,a) (meaning a
from D1 and a from D2), subjects of type t2 will pick (b,a), and subjects of type t3 will pick
(a, c). Subjects with non-convex preferences (in M0) will pick (b, c). Thus, this experiment
both tests the model and classifies subjects into types within the model.

Since the menus {a,b} and {a, c} are sufficient to test and classify this model, and the
inclusion of these two remains necessary to test convex preferences in the first place, the
characterization is the same as the previous example. An experiment tests and classifies
this model if and only if it contains {a,b} and {a, c}.

Suppose we wanted to assume that the non-convex preferences were impossible and only
classify subjects among the types t1 = {abc,acb}, t2 = {bac}, t3 = {cab} (without also testing
the model). We refer to this as classifying a restricted model. Again, the experiment D1 =
{a,b, c} is sufficient. So too is D1 = {a,b},D2 = {a, c}. In fact, an experiment classifies this

4Types may also be associated with parameter values, or ranges of parameter values of a utility function. For
instance, the utility function u(x1, x2) = xα1 x1−α

2 refines the convex preference model discussed above, splitting
the set {abc,acb,bac, cab} into singleton types t1 = {bac}, t2 = {abc}, t3 = {acb}, and t4 = {cab}, associated with
the parameter values α> 0.63, α ∈ (0.5,0.63), α ∈ (0.37,0.5), and α< 0.37, respectively.
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restricted model if and only if it contains the menu {a,b, c} or both of the menus {a,b} and
{a, c}.

The Permutohedron

We relate experiments to models through the notion of separation. We say an experiment
separates two rankings if subjects with those rankings make different choices in the exper-
iment. The rankings an experiment needs to separate depend on which goal the experi-
menter is pursuing. Testing a model requires separating all rankings inside the model (M)
from those outside the model (M0). Classifying a model requires separating all rankings of
each type (ti ∈ M) from all rankings of the other types (t j ∈ M). Classifying does not require
separating rankings in the model from rankings outside the model, and testing does not
require separating the various types inside the model.

FIGURE I. The labeled permutohedron for three objects.

To understand which rankings are separated by a given experiment, we first visualize all
possible rankings on a graph called the permutohedron. The permutohedron is constructed
by placing each preference ranking on a vertex and connecting rankings that differ only by
a single transposition of adjacent pairs in the ordering. We call such rankings “neighbors.”
For instance, abc and acb are neighbors because they differ only in their ranking of b and
c.

Next, we augment the permutohedron by labeling each edge with those menus from which
the neighboring rankings would choose differently. For instance, abc and acb choose differ-
ently only from the menu {b, c}, so we label the edge between abc and acb with the menu
{b, c}. The rankings acb and cab choose differently from both {a, c} and {a,b, c}, so both
appear on the edge between acb and cab. The labeled permutohedron for three objects is
shown in Figure I.
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The key results of our paper show how the labeled permutohedron can be used to char-
acterize the experiments that test and classify any model. This is true even though the
permutohedron has no direct information about which menus separate the non-adjacent
rankings. Specifically, our main theorem shows that to test or classify a model, an ex-
periment must contain at least one menu from the edge between every “boundary pair” of
rankings: adjacent rankings that belong to different sets in the model.

FIGURE II. Boundary pairs for the Model 1, Monotonic Preferences (left
panel) and Model 2, Convex Preferences (right panel). Solid edges are between
boundary pairs.

Model 1 (Monotonic Preferences). The left panel of Figure II highlights the boundary
pairs for the monotonicity example discussed above. The edges between boundary pairs are
shown in bold. Here, the boundary pairs are {abc,bac} (because abc ∈ M and bac ∈ M0) and
{acb, cab} (because acb ∈ M and cab ∈ M0). An experiment will test this model if and only if
it contains a menu from each of the two edges connecting these boundary pairs. This leads
to the characterization presented above. An experiment that tests this model must contain
{a,b, c} or both of {a,b} and {a, c}.

Model 2 (Convex Preferences). The right panel of Figure II highlights the boundary pairs
for the convex preferences example discussed above. There are again two boundary pairs:
{bac,bca} and {cab, cba}. Since the first edge contains only the menu {a, c}, it must be
included in the experiment. The second edge contains only the menu {a,b}, so it also must
be included in the experiment. Thus, an experiment tests this model if and only if it includes
these two menus.

In Section VI we extend our theorems to include choice tasks where subjects are asked
to select their top ki favorite objects from each menu D i. For instance, every experiment
that tests the convex preference model discussed above requires subjects to choose from the
menus {a,b} and {a, c}. However, if we extend the possible experiment with these choose-k
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menus, it can be tested with a single choice task in which subjects choose their two favorite
options (or, equivalently, to eliminate their least favorite option) from the menu {a,b, c}.

Testing and classifying a model with more types works similarly: the boundary pairs are
all of the adjacent pairs that are either in different types (when classifying), or where one is
in M and one is in M0 (when testing).

FIGURE III. Boundary pairs for example Model 3. The left panel shows the
boundary pairs (solid edges) for testing and classifying the model. The right
panel shows the boundary pairs on the restricted permutohedron for classify-
ing only.

Model 3 (Testing and Classifying). The left panel of Figure III highlights the boundary
pairs for testing and classifying Model 3 discussed above. The edges between boundary
pairs are shown in bold. There are four boundary pairs, {abc,bac}, {acb, cab}, {bac,bca},
{cab, cba}. An experiment will test this model if and only if it contains a menu from each
of the four edges connecting these boundary pairs. To cover the edges between {bac,bca}
and {cab, cba}, the experiment must contain menus {a,b} and {a, c}. However, these two
menus also cover the remaining edges between boundary pairs {abc,bac} and {acb, cab}, so
there are no further requirements. This leads to the characterization presented above, an
experiment tests and classifies this model if and only if it contains {a,b} and {a, c}.

Additional complications arise when the model being classified (but not tested) does not
include all possible preferences. In Section V we demonstrate that an experiment classifies
such a “restricted” model (those which do not include every possible ranking) if and only
if it contains menus from every boundary pair on a modified graph we call the restricted
permutohedron.

Complications for constructing the restricted permutohedron can arise in some models
(see Section V for details). Here, however, the restricted permutohedron is constructed
simply by deleting the rankings outside the model and their associated edges from the full
labeled permutohedron.
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Model 3 (Classifying). The right panel of Figure III shows the restricted permutohedron
for Model 3. The edges between boundary pairs are shown in bold. There are two boundary
pairs: {abc,bac}, {acb, cab}. Covering these edges can be accomplished either with the
inclusion of {a,b, c} or the inclusion of both {a,b} and {a, c}, formalizing the characterization
presented above.

While these examples are simple, the logic generalizes to any model over a finite set of
alternatives X . In the next section, we generalize this theory.

III. THE FRAMEWORK

Let X be a finite set of alternatives, with typical elements denoted by a,b, c, and so on.5

The set of all complete strict orderings of X (the orderings that are complete, reflexive,
transitive, and antisymmetric) is given by P . A typical element of P is denoted by P.6 To
economize notation, we use abc to denote the P such that aPb and bPc, for example.

A model M = (t1, . . . , tn, M0) is a partition of P , where each ti ⊆P (ti ̸= ;) is referred to as
a type within the model, and M0 ⊆ P is the set of orders not included in the model. When
P ∈ M0 the interpretation is that model M assumes no subject could have ordering P. For
example, if X is a set of simple lotteries and M is the expected utility model, then each ti

identifies a unique ordering with parallel, linear indifference curves on the simplex and M0

contains all non-expected-utility orderings. Overloading notation, we also use M to denote
∪n

i=1ti, the set of all orderings in the model. Thus, we can write P ∈ M for any P ̸∈ M0. We
say a model is complete if M0 =;, and restricted otherwise. When P ∈ M let t(P) be the type
containing P; we set t(P)= M0 if P ∈ M0.

An experiment is a family of sets D = {D1, . . . ,D|D|} such that D i ⊆ X and |D i| ≥ 2. The
interpretation is that each D i is a menu from which the subject must choose their most-
preferred element. We define the following choice function:

domP (X ′)= {x ∈ X ′ : (∀y ∈ X ′) xP y}.

Since all orders are assumed to be antisymmetric, domP (X ′) will always contain a single
element. We now define how a model distinguishes between two orders, and compare that
to how an experiment distinguishes between those orders.

Definition 1 (Differentiated Pair). Fix a model M = (t1, . . . , tn, M0). Two orders P and P ′ are
differentiated by M (or, {P,P ′} is a differentiated pair) if t(P) ̸= t(P ′).

5We model X as exogenous, but note in Section IX that the experimenter may first select X from some larger
set of possible alternatives. We do not study that selection process in this paper, though it is a very interesting
avenue for future research.
6To be clear, these are strict rankings with the added requirement that every alternative is comparable to
itself. Thus, aPb and bPa implies a = b.
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Definition 2 (Separated Pair). Fix an experiment D. Two orders P and P ′ are separated
by D (or, {P,P ′} is a separated pair) if there exists some D i ∈ D such that domP (D i) ̸=
domP ′(D i).7

In other words, a model differentiates two orders if the orders belong to different types,
while an experiment separates two orders if those orders lead to different choices being
observed in at least one menu.

We can now give our main definitions of classifying and testing models using an experi-
ment.

Definition 3 (Classifying). An experiment D classifies subjects according to model M (or,
more simply, classifies M) if every P ∈ M and P ′ ∈ M that are differentiated by M are also
separated by D.

In other words, if P and P ′ belong to different types in the model (but not M0) then there
is some D i ∈ D for which they will choose differently. Thus, the experimenter can use the
subject’s choices in the experiment to identify their type.

Definition 4 (Testing). An experiment D tests model M if all P ∈ M and P ′ ∈ M0 are sepa-
rated by D.

In words, testing a model simply means that the subject’s choices inform the experimenter
whether their preference P is included in M =∪n

i=1ti or belongs to M0.8

An important difference between testing and classifying is that when classifying, we only
consider orders P and P ′ that are both in M. It is as though the researcher assumes that
any P ∈ M0 will not be observed and is only interested in the subject’s type ti. When testing,
the experimenter is instead only interested in learning whether P ∈ M, and not in learning
the subject’s type. An experiment tests and classifies a model if it accomplishes both.

To understand this difference, think of the experiment D as generating a partition of
preference orderings based on the possible choices the subject could make in the experiment.
Formally, given experiment D, let RD = (

r1, . . . , rq
)

be the partition of P such that P and
P ′ are in the same partition element if and only if they are not separated by D (meaning
domP (D i) = domP ′(D i) for every D i ∈D). Let r(P) be the partition element that contains P.
We refer to RD as the experiment partition for experiment D.

For an experiment D to test a model M, each r(P) must be a subset of either M or M0.
In other words, RD is a refinement of the two-element partition {M, M0}. For an experiment
D to classify M, each r(P) must be a subset of ti ∪ M0 for some ti ∈ M, or else r(P) ⊆ M0.
If r(P) ⊆ ti ∪ M0 then the experimenter (who is assuming M0 is impossible) classifies the

7Note that Definitions 1 and 2 apply to any pair P and P ′, including those for which P ∈ M and P ′ ∈ M0.
8Thus, a model in which M0 =; cannot be tested because it incorporates all possible preferences.
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subject as type ti. In this case, they cannot learn whether P ∈ ti or P ∈ M0, meaning they
cannot learn whether or not their assumption is true. If r(P) ⊂ M0 then they do learn
that their assumption is false and are therefore unable to classify any subject with such a
preference. Combining these insights gives an alternative definition of classifying a model:
experiment D classifies model M if RD is a refinement of {t1, . . . , tn} after all orders in M0

are removed from RD .9 An experiment D tests and classifies model M if RD is a refinement
of (t1, . . . , tn, M0).

As an example of classifying without testing, consider the Holt and Laury (2002) exper-
iment widely used to estimate CRRA risk aversion parameters. Subjects make ten binary
choices between a low-risk and a high-risk lottery. The binary menus are presented as a 10-
row list in which the difference in expected values between the lotteries is decreasing down
the list, meaning a subject with CRRA preferences working down the list will switch only
once from choosing the low-risk lottery to the high-risk lottery. If ρ represents the CRRA
risk aversion parameter, then a subject who switches immediately has ρ <−0.95, a subject
who switches after the second row has ρ ∈ (−0.95,−0.49), and so on. Someone who never
switches has ρ > 1.37. What model does this classify? It is the model in which t1 contains
all CRRA orderings with ρ <−0.95, t2 contains all CRRA orderings with ρ ∈ (−0.95,−0.49),
and so on, up to t10, which contains all CRRA orderings with ρ > 1.37. And M0 contains all
non-CRRA preferences, including those that violate expected utility altogether. But the Holt
and Laury (2002) experiment does not test this model; a subject with non-CRRA preferences
might still exhibit a single switch point, in which case the experimenter would wrongly clas-
sify them as belonging to some set ti inside the model. Formally, there exists some P ∈ M0

and type ti in the model such that r(P)∩ ti ̸= ;.
Even though the Holt-Laury experiment does not test the CRRA model, it is still possible

for the model to be disproven via this experiment. This happens when a subject exhibits
“multiple switching” behavior, switching back to the low-risk lottery after picking a high-
risk lottery on an earlier row. These choices reveal that CRRA is violated, meaning P ∈ M0.
Multiple switching occurs in a small but notable fraction of subjects across studies. Such
data are obviously problematic for experimentalists who are implicitly assuming that all
subjects have CRRA preferences; multiple switching data are often dropped, or else a single
switch point is imputed from the range of observed switches, effectively forcing conformity
with the model. Many researchers simply sweep the problem under the rug by forcing
subjects to switch only once, so that for every P there is some ti for which ; ̸= (r(P)\M0)⊆ ti.

Testing a model can equivalently be viewed as classifying the subject into one of two types:
those consistent with the model, and those not. Formally, testing model M = (t1, . . . , tn, M0)

9Formally, for each P ∈ M let rM(P)= r(P)∩M and then define RM
D

= {rM(P)}P∈M to be the resulting partition
of M. Experiment D is said to classify model M = {t1, . . . , tn, M0} if RM

D
is a refinement of {t1, . . . , tn}.
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is equivalent to classifying the complete model M′ = (t′1, t′2) defined by t′1 = ⋃
i ti (those con-

sistent with M) and t′2 = M0 (those not consistent with M). Thus, the theoretical conditions
for testing a model are very similar to those needed for classifying a complete model. Clas-
sifying a restricted model, however, is fundamentally different, so its results are presented
separately.10

The Permutohedron

FIGURE IV. The permutohedron for four objects X = {a,b, c,d}

We now introduce the geometric structure we use to characterize experiments that test
and classify models. The set of transpositions between two orderings P and P ′ is given by:

T(P,P ′)= {
{x, x′}⊆ X : domP ({x, x′}) ̸= domP ′({x, x′})

}
We say P and P ′ are neighbors if |T(P,P ′)| = 1. |T(P,P ′)| is known as the Kendall tau dis-

tance between the rankings P and P ′ (Kendall, 1938, 1948).11 The transposition graph is a
10In this paper, we take a model M as fixed and determine which experiments test/classify that model. The
reverse of this problem, determining which models can be tested/classified by a given experiment D, is straight-
forward. Each experiment induces an experiment partition RD . This is the finest model that experiment D

can test and classify. Because of this, any model M that is coarser than RD can also be tested and classified by
D.
11This distance metric was also suggested by Kemeny (1959).
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tuple (P ,E ) in which all orderings in P are nodes and all edges in E connect two neighbors:
E = {{P,P ′} : |T(P,P ′)| = 1}. This graph can be represented as a polytope in |X |-dimensional
Euclidean space by mapping each ranking into a vertex with coordinates given by the po-
sition of the relevant object in the ranking. For instance, if abcd is mapped to (1,2,3,4)
then cabd is mapped into (2,3,1,4). The resulting polytope is known as the permutohedron.
Since the sum of the coordinates is fixed for any ranking, the permutohedron is usually dis-
played in the |X |−1 dimensional simplex; for example, the permutohedron for four objects
is shown as a three-dimensional shape in Figure IV, while the three-object permutohedron
appears as a hexagon in Figure I.12

The labeled permutohedron is a tuple (P ,E ,L), which consists of a graph with nodes P

and edges E as described above, but with edge labels L : E ↠ 2X defined as follows: For any
edge E = {P,P ′} ∈ E , L(E)= {S ⊆ X : domP (S) ̸= domP ′(S)}. That is, the edges are labeled with
all the sets for which the neighboring rankings choose differently. Note that an experiment
D separates neighbors P and P ′ if there exists some D i ∈ D such that D i ∈ L({P,P ′}); this
will be useful in our main result.

There is a simple and useful characterization of the set of labels L(E) on the edge between
two neighbors. If P and P ′ are neighbors, then they differ only in their ranking of two
adjacent objects x and x′, meaning T(P,P ′) = {

{x, x′}
}
. If for any S ⊆ X we define B(S;P) =

S∪{x ∈ X : (∀y ∈ S) yPx} to be the objects in X that are either in S or are ranked worse than
everything in S according to P, then we must have that B

(
{x, x′},P

) = B
(
{x, x′},P ′). Thus,

any set D i will separate P and P ′ (meaning D i ∈ L({P,P ′}) if and only if (1) D i contains
{x, x′}, and (2) D i ⊆ B

(
{x, x′},P

)
.13 Thus, L({P,P ′}) = {

S ⊆ X : {x, x′}⊆ S ⊆ B({x, x′},P)
}
. This

also helps enumerate the number of sets in L(E): There are |B({x, x′},P)|−2 objects ranked
strictly worse than x and x′ according to P (and P ′). Thus, the number of menus on the edge
between these rankings is 2|B({x,x′},P)|−2.

A path W between P and P ′ is a finite sequence of v adjacent nodes (P1...,Pv) with Pi ̸= P j

for i ̸= j such that P1 = P, Pv = P ′ and {Pi,Pi+1} ∈ E . The length of path W is defined as
v− 1 (the number of edges). Let E (W) be the set of edges traversed by path W . A path
W between P and P ′ is shortest if there is no other path between P and P ′ with a smaller
length. Shortest paths may not be unique.

12To simplify understanding in our context, we label the vertices with their associated rankings, rather than
vertex coordinates as is common elsewhere. When the vertices are associated with permutations of the objects
X , the graph is the Cayley graph of the symmetric group S|X | generated by the |X | − 1 possible adjacent
transpositions. Since the polytope and the Cayley graph are isomorphic, “permutohedron” is often used to
refer to both objects. For instance, our usage is consistent with Berge (1971).
13We thank a referee for pointing out this useful fact.
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FIGURE V. The shortest path from abcd to cabd and one of the two shortest
paths from cabd to adcb. The edges have been labeled along each path.

Definition 5 (Convexity). A set of rankings S is convex if, for every pair P,P ′ ∈ S, every
shortest path from P to P ′ is contained in S. Additionally, we call a partition of P convex if
every set in the partition is convex.

Experiments and Convexity

We now discuss the relationship between experiments and the geometry of the permutohe-
dron. To help visualize this, we introduce the following definition.

Definition 6 (Graph Induced by Experiment D). The graph induced by experiment D is the
labeled permutohedron with edges between rankings separated by D removed.

The graph induced by experiment D consists of distinct components, where the rankings
contained in a particular component correspond exactly to some element of the experiment
partition RD . In Figure VI, we show the graphs induced by four different experiments on the
set X = {a,b, c,d}. This figure shows some of the complex ways that even simple experiments
can partition the set of rankings.

As can be seen in Figure VI, there is a lot of structure in the way experiments partition the
set of rankings. For our purposes, the most important regularity is that every experiment
partition must be convex (with respect to the full permutohedron).14 This implies that each
14We note that convex partitions are not a characterization of experiments. There are convex partitions that
are not induced by an experiment. In the language of Azrieli et al. (2021), such partitions are not exactly
elicitable. This holds even for the extended experiments discussed in Section VI. While a characterization
of experiments in terms of the possible partitions is outside the scope of this paper, we draw attention to the
symmetries of the connected subgraphs shown in Figure VI.



16 HEALY & LEO

FIGURE VI. Induced graphs for experiments (clockwise) D = {
{a, c}

}
,D ={

{a,b, c,d}
}
,D = {

{b, c,d}
}
,D = {

{a, c}, {c,b}
}
.

component of the induced graph retains all the shortest paths on the full permutohedron
between the rankings in that set.

Take, for example, the experiment D = {
{a,b, c,d}

}
shown in the top right of Figure VI.

The experiment separates every pair of rankings with a different top object, and thus par-
titions the rankings into the four sets defined by those top objects. This induces a graph
made up of four disconnected hexagonal components, each isomorphic to the three-object
permutohedron. Though it is difficult to visualize, this also provides some insight into the
recursive structure of a higher-dimensional permutohedron. The five-object permutohedron,
for instance, contains five subgraphs isomorphic to the four-object permutohedron shown in
Figure IV.
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The fact that experiments generate convex partitions was proven by Azrieli et al. (2021),
though the insight is also apparent in Lambert (2019). Azrieli et al. (2021) provide a simple
geometric proof by converting each ranking into a convex set of utility vectors in Rn consis-
tent with that ranking, and then showing that an experiment generates a union of such sets
that itself must be convex. We provide here a new proof that is entirely graph-theoretic,
given our definition of convexity is in terms of shortest paths.

Proposition 1 (Experiments are Convex). Every experiment partition RD is convex.

Proof. The proof involves first characterizing the shortest paths between rankings via trans-
positions. Recall that T(P,P ′) is the set of transpositions between P and P ′.

Lemma 1 (Adjacent Transpositions). If T(P,P ′) is non-empty, then there must be an adja-
cent pair of objects in the ranking P that is transposed in P ′.

Proof of Lemma 1. Assume otherwise. Without loss of generality let x1, x2, ..., xt be a se-
quence of objects that are adjacent in P such that xiPxi+1 with {x1, xt} ∈ T(P,P ′). By as-
sumption, since no adjacent pair in P is transposed in P ′, and since {x1, xt} ∈ T(P,P ′), we
have x1P ′x2P ′ . . .P ′xtP ′x1, which contradicts the fact that each ranking must be acyclic. □

Lemma 2 (Length of Shortest Paths). The length of any shortest path between P and P ′ is
|T(P,P ′)|.
Proof of Lemma 2. Since P and P ′ differ by |T(P,P ′)| transpositions, and each edge involves
only a single transposition, the distance must be at least |T(P,P ′)|. Since each edge sepa-
rates two rankings that differ only by a single transposition, that transposition must involve
objects that are adjacent in each ranking. Thus, the claim is equivalent to the fact that any
ranking can be transformed into any other ranking using |T(P,P ′)| adjacent transpositions.
Construct a sequence of rankings by the following procedure. Let P1 = P and for every Pi

pick an adjacent pair of objects in Pi that is transposed in P ′. By Lemma 1 such a pair
will always exist as long as Pi ̸= P ′, and because only adjacent transpositions are made,
T(Pi+1,P ′) ⊂ T(Pi,P ′). Thus, the sequence transforms P into P ′ with |T(P,P ′)| adjacent
transpositions.15 □

Since any shortest path between P and P ′ has |T(P,P ′)| edges, this is also the graph
distance between P and P ′. Next, we prove an important lemma about the sets of size two
appearing on any shortest path between two rankings. To that end, for any path W , let L(W)
be the union of L(E) for every edge in E (W).

Lemma 3 (Shortest Paths and Adjacent Transpositions). If W is a shortest path between P
and P ′ then every set S ∈ T(P,P ′) appears exactly once in L(W). Furthermore, if S ∉ T(P,P ′)
and |S| = 2, then S ̸∈ L(W).
15This algorithm is known as the bubble sort in the computer science literature (Astrachan, 2003).
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Proof of Lemma 3. Every edge label contains exactly one set with |S| = 2 associated with
the adjacent transposition between the neighboring rankings attached by that edge. If a
set S ∈ T(P,P ′) does not appear along W then, for every ranking P̃ along W , domP̃ (S) is
the same. Thus, domP (S) = domP ′(S), which contradicts that S ∈ T(P,P ′). Thus, every
S ∈ T(P,P ′) must appear at least once, but since the length of W is |T(P,P ′)| by Lemma 2,
and each edge has only one set on its label with |S| = 2, every set S ∈ T(P,P ′) must appear
exactly once. □

We are now ready to prove Proposition 1 (experiments are convex). Suppose it were false.
Then there is some set in RD that is non-convex. Thus, some pair of rankings P and P ′ are
such that P ′ ∈ r(P) but there is some shortest path W between them that does not remain
inside r(P).

There must be some P ′′ on W such that r(P ′′) ̸= r(P), thus there is some set D i ∈ D for
which x = domP (D i) ̸= domP ′′(D i)= x′′. However, since r(P)= r(P ′), domP (D i)= domP ′(D i)=
x. x and x′′ must be inverted at least twice on the path W . Thus, the set {x, x′′} appears at
least twice on some shortest path from P to P ′, contradicting Lemma 3.

□

IV. CLASSIFYING COMPLETE MODELS & TESTING MODELS

The Main Theorem

Our first theorem characterizes when an experiment D classifies a complete model M =
(t1, . . . , tn). To understand the result, recall the partition of preferences induced by the ex-
periment D, which we call the experiment partition. It is the partition RD = (

r1, . . . , rq
)

of P

such that P and P ′ are in the same partition element if and only if P and P ′ would make
the same choices in every menu D i ∈ D; in our terminology this means that P and P ′ are
not separated by D (see Definition 2). Again, r(P) is the experiment partition element con-
taining order P, and recall that t(P) is the type (model partition element) containing P. If
D successfully classifies model M = (t1, . . . , tn) then it must be the case that r(P) ⊆ t(P) for
every P. Mathematically, this means that RD is a refinement of M. Intuitively, it means
that the experiment collects at least as much information about P as is necessary to identify
to which type it belongs in M. This is summarized by the following lemma, which is key to
our main result below.

Lemma 4 (RD Refines M). If D classifies M then the experiment partition RD is a refine-
ment of M, meaning every r i ∈ RD is a subset of some ti ∈ M.

Proof of Lemma 4. This follows immediately from the definition of classifying a model: If
RD were not a refinement of M then there would be an r i that intersects two different types
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ti and t j. But then there would be some differentiated pair P ∈ ti and P ′ ∈ t j such that
r(P)= r(P ′)= r i, meaning D fails to separate this differentiated pair. □

We can rephrase the idea of RD being a refinement of M by using the language of differ-
entiated pairs. Recall that {P,P ′} is a differentiated pair if P and P ′ are assigned to different
types in the model. The main theorem shows that it is sufficient to check only that the ex-
periment separates those differentiated pairs that are neighbors in the permutohedron. We
call these boundary pairs.

Definition 7 (Boundary Pairs). A pair {P,P ′} is a boundary pair for model M if it is a
differentiated pair such that P and P ′ are neighbors in the permutohedron.

Theorem 1 (Characterization of Experiments that Classify Complete M). The following are
equivalent:

(1) Experiment D classifies a complete model M = (t1, . . . , tn),
(2) D separates every boundary pair for model M, and
(3) The experiment partition RD is a refinement of the model partition M.

Proof of Theorem 1. Equivalence between (1) and (3) follows immediately from definitions,
so we focus on proving that (1) if and only if (2).

Necessity is simple: If D classifies M then all differentiated pairs are separated by D, and
so every boundary pair must also be separated.

For sufficiency, we will use Lemma 4 to prove the contrapositive: if D fails to separate
some differentiated pair {P,P ′} then it must also fail to separate some boundary pair {P̂, P̂ ′}.
Since {P,P ′} is differentiated, we have that t(P) ̸= t(P ′). But if D fails to separate them, then
r(P)= r(P ′).

Since every experiment D produces a convex partition RD by Proposition 1, there is a
path from P to P ′ entirely in r(P). Since t(P) ̸= t(P ′), there is some first pair of neighbors
on this path P̂ and P̂ ′ where t(P̂) ̸= t(P̂ ′). But since this path lives entirely inside r(P), so
r(P̂)= r(P̂ ′). Thus, we have a boundary pair that is not separated, completing the proof. □

Next, we provide two important corollaries. First, recall that testing a restricted model
M = (t1, . . . , tn, M0) (where M0 ̸= ;) is equivalent to classifying model M′ = (t′1, t′2) where
t′1 =

⋃
i ti and t′2 = M0. This gives the following corollary.

Corollary 1 (Characterization of Experiments that Test M). The following are equivalent:

(1) Experiment D tests a model M = (t1, . . . , tn, M0),
(2) D separates every pair of neighbors P,P ′ such that P ∈⋃

i ti and P ′ ∈ M0, and
(3) The experiment partition RD is a refinement of the two-element partition (

⋃
i ti, M0).

Finally, an experiment can simultaneously classify and test a restricted model M = (t1, . . . , tn, M0)
because doing so is equivalent to classifying the complete model M′ = (t1, . . . , tn, t′n+1) where



20 HEALY & LEO

t′n+1 = M0. For this corollary, recall that if P ∈ M and P ′ ∈ M0 then this pair is differentiated
by M.

Corollary 2 (Characterization of Experiments that Test and Classify M). The following are
equivalent:

(1) Experiment D tests and classifies a model M = (t1, . . . , tn, M0),
(2) D separates every pair of neighbors on the permutohedron that are differentiated by

M, and
(3) The experiment partition RD is a refinement of the n+1-element partition (t1, . . . , tn, M0).

We motivated these theorems by imagining a researcher who takes, as given, model M
and must choose an experiment D that tests or classifies M. Alternatively, we could imagine
a researcher (or referee) who takes, as given, an existing experiment D and wants to know
which models it tests or classifies. In that case, take the labeled permutohedron and “cut”
any edge whose label contains a menu from D. The result will be the experiment partition
RD , described above. This partition can be thought of as a complete model. Following the
discussion that precedes Definition 3, D will classify any complete model that is a coarsening
of RD , and will test any model M such that M0 equals the union of some set of types in RD .16

V. CLASSIFYING RESTRICTED MODELS

We now focus on classifying a restricted model, which means the researcher wants to iden-
tify the subject’s type while assuming orders in M0 cannot be observed. Theorem 1 may not
apply in this situation, since it is now possible that a type ti shares no boundaries with an-
other type t j in the model. For example, consider X = {a,b, c,d} and a model with only two
types: those orders for which a is top-ranked and those for which a is bottom-ranked. There
are no differentiated pairs that are neighbors in the permutohedron, and so this model has
no boundary pairs.

We can, however, obtain an analogous theorem by working on a restricted permutohedron
obtained by removing all rankings in M0 from the permutohedron. We also remove all
edges adjacent to a ranking in M0. In doing so, it is possible we completely remove the
shortest paths between two rankings P and P ′. As we show in Proposition 2 in Section
VII, two rankings are separated by an experiment if and only if the experiment contains
a menu listed along the edges of any shortest path between them. Thus, if every shortest
path between two rankings is removed from the permutohedron, the information relevant
to differentiating the rankings is lost. To correct this, we reconnect those rankings for which

16One could then define an ordering over experiments based on how fine are the partitions they generate.
Certainly if D is a refinement of D′ then RD will be a refinement of RD′ . It would be interesting to explore
further results along these lines.
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every shortest path between them was deleted. We now formally present this augmented
version of the labeled permutohedron.

The set of restricted neighbors for M is defined as every pair P,P ′ ∈ M such that there does
not exist a different P ′′ ∈ M that occurs along any shortest path between P and P ′ in the
full permutohedron (P ,E ). The restricted labeled permutohedron is a tuple (P \ M0,E,L),
which consists of a graph with nodes P \M0 and edges E between the set of restricted neigh-
bors, along with the edge labels L̃ defined as follows: L̃(E) = {

S ⊆ X : domP (S) ̸= domP ′(S)
}
.

That is, the edges are labeled with all the sets for which the neighboring rankings choose
differently.

For instance, consider a model where M0 = {adcb,dacb}. Its restricted permutohedron
is shown in Figure VII. The rankings adbc and acdb are not neighbors in the original
permutohedron, since they differ by more than one transposition. But there is a unique
shortest path between these rankings: (adbc,adcb,acdb). Since adcb ∈ M0, then adbc and
acdb become restricted neighbors. Similarly, dabc and dcab become restricted neighbors,
since the only ranking on a shortest path between them is dacb, which is in M0.

FIGURE VII. The restricted labeled permutohedron for 4 objects X =
{a,b, c,d} with M0 = {adcb,dacb}. (Only the bold edges have been labeled.)

As we will prove below, an analogous result to our Theorem 1 applies to the restricted
labeled permutohedron when it comes to classifying restricted models. Perhaps unsurpris-
ingly, the proof of this result is remarkably similar to that of Theorem 1. One complication
is that the partition induced by an experiment on the restricted permutohedron is not nec-
essarily convex, a property leveraged in the previous proof.
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For instance, suppose we want to classify a restricted model with two types on the set X =
{a,b, c,d}. The first type consists of all rankings with a ranked first. The second type is the
single ranking {bcda}. M0 consists of all remaining rankings. After deleting all vertices in
M0 and their adjacent edges, every shortest path (on the full permutohedron) between each
of the a−first rankings and bcda is removed. Thus, each of the a−first rankings becomes a
restricted neighbor of bcda.

Now consider the shortest paths on the restricted permutohedron between abcd and
adcb. Any path between this pair that remains inside the experiment set containing the
a-first rankings involves three edges. The shortest path on the restricted permutohedron is
a two-edge path passing outside of that experiment set through the vertex bcda. The ex-
periment is not convex with respect to the shortest paths on the restricted permutohedron.
This example is depicted in Figure VIII.

FIGURE VIII. The restricted permutohedron for objects X = {a,b, c,d} where
t1 is the set of all a−first rankings and t2 = {bcda}. Dotted lines show the
shortest path between abcd and adcb.

However, in the proof of Theorem 1 convexity of the experiment partition was only used to
ensure the existence of a path between any two rankings in the same set of the experiment
partition that remains in that set. More formally, we only required that the experiment
partition is a set of connected subgraphs. We prove this weaker condition within the proof
of Theorem 2, although we note that the convexity of the experiment partition on the full
permutohedron still plays a key role in this proof.

Finally, recall that Theorem 1 showed that an experiment classifies a complete model if
and only if the experiment partition RD is a refinement of M = (t1, . . . , tn), meaning r(P) ⊆
t(P) for every P ∈ P . With a restricted model, the requirement is weaker: We can achieve
classification even when r(P)⊆ t(P)∪M0 because the experimenter classifies types assuming
orderings in M0 are “impossible.” All that is required is that r(P) does not include rankings
from two different types in the model.
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To capture this looser requirement, we can restrict the experiment partition to P \ M0 in
the following way: Start with the original experiment partition RD = (

r1, . . . , rq
)
. For any

set M0 ⊆ P define the M0-restricted experiment partition R̃D(M0) = (
r̃1, . . . , r̃q

)
to be the

partition of P \ M0 such that r̃ i = r i \ M0 for each i ∈ {1, . . . , q}. Let r̃(P) be the partition
element containing P. It is straightforward to see that classifying a restricted model M =
(t1, . . . , tn, M0) is equivalent to requiring that R̃D(M0) is a refinement of (t1, . . . , tn), so that
r̃(P)⊆ t(P) for every P.

We are now ready to state and prove a generalization of Theorem 1 that allows for the
classification of restricted models; when M0 =; Theorem 2 is identical to Theorem 1.

Definition 8 (Restricted Boundary Pairs). Fix a model M. A pair {P,P ′} with P,P ′ ∈ M is
a restricted boundary pair for model M if it is a differentiated pair such that P and P ′ are
restricted neighbors for M.

Theorem 2 (Characterization of Experiments that Classify Restricted M). The following are
equivalent:

(1) Experiment D classifies a model M = (t1, . . . , tn, M0),
(2) D separates every restricted boundary pair for model M, and
(3) The M0-restricted experiment partition R̃D(M0) is a refinement of the partition (t1, . . . , tn).

Proof of Theorem 2. As in Theorem 1, equivalence between (1) and (3) is straightforward, so
we focus on the equivalence between (1) and (2).

Necessity is simple: If D classifies M then all differentiated pairs are separated by D, and
so every boundary pair must also be differentiated.

Before proceeding, we first prove that the partition elements in R̃D(M0) are connected
subgraphs.

Lemma 5 (R̃D is a Set of Connected Subgraphs). Each set r̃ i in R̃D(M0) is a connected
subgraph on the restricted permutohedron.

Proof of Lemma 5. Choose any two rankings P and P ′ such that r = r(P)= r(P ′). The proof is
by induction on the graph distance between P and P ′. If P and P ′ have distance 1, then they
are restricted neighbors and thus connected within the set r. Now suppose they are graph
distance d apart, either they are restricted neighbors or there is some vertex on a shortest
path between them in the unrestricted permutohedron. Since experiments are convex by
Proposition 1, that vertex is in r. Furthermore, that vertex is no more than distance d−1
from both P and P ′. If every pair of rankings in the same set of the experiment partition
that are no more than distance d−1 apart are connected within their experiment set, then
two rankings in the same set that are distance d are connected as well. □

We are now ready to prove that separating all restricted boundary pairs is sufficient for
separating all differentiated pairs. We will prove the contrapositive: if D fails to separate
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some differentiated pair {P,P ′} then it must also fail to separate some boundary pair {P̂, P̂ ′}.
Since {P,P ′} is differentiated, we have that t(P) ̸= t(P ′). But if D fails to separate them, then
r̃(P)= r̃(P ′).

By Lemma 5, there is a path from P to P ′ entirely in r̃(P). Since t(P) ̸= t(P ′), there is some
first pair of neighbors on this path P̂ and P̂ ′ where t(P̂) ̸= t(P̂ ′). But since this path lives
entirely inside r̃(P), so r̃(P̂) = r̃(P̂ ′). Thus, we have a boundary pair that is not separated,
completing the proof. □

VI. SET-VALUED CHOICES

Thus far, we have focused on experiments in which only one object can be chosen from
each menu, which we refer to as choose-one menus. Experiments using choose-one menus
are both simple and easy to incentivize. A generalization of this allows menus in which
subjects choose their top k items. We refer to these as choose-k menus. In this case, the
subject is paid a lottery in which each of the chosen items is given to the subject with equal
probability. This is incentive compatible under the same assumptions as choose-one menus,
so long as subjects perceive the lottery probabilities as objective and truly identical (Azrieli
et al., 2020).

Choose-k menus expand the set of experiments that test/classify a model. For example,
consider objects X = {a,b, c} and the complete model in which every ordering is of a separate
type. Any experiment that classifies this model must include D1 = {a,b},D2 = {a, c},D3 =
{b, c}. However, if choose-two menus are permitted, the complete model can be classified
by asking subjects to choose their two favorite objects from {a,b, c} and their single favorite
object from {a,b, c}.

As another example, the convex preferences model in Section II partitioned the set {a,b, c}
into t1 = {abc,acb,bac, cab}, M0 = {bca, cba}. Recall that with choose-one menus, any exper-
iment that tests the model requires including both D1 = {a,b} and D2 = {a, c}. However, if
we allow choose-two menus, it is possible to test the model by having subjects choose their
two favorite objects from {a,b, c}.

Our results for choose-one menus presented above extend rather naturally to experiments
that include choose-k menus. To achieve this, we can expand the edge labels on the permu-
tohedron to include this richer class of sets. In this case, we need to designate not only the
set of objects in the menu but also the number of objects to be chosen from that menu.

We adopt the notation of including the number of objects to be chosen after the set of
objects and separated by a colon. So, the label {a,b, c} : 2 indicates that two objects are to
be chosen from the set {a,b, c}. As before, we label each edge with the menus for which the
neighboring rankings choose differently. The labeled permutohedron for objects {a,b, c} with
choose-two menus included is shown in Figure IX.
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FIGURE IX. The labeled permutohedron for objects X = {a,b, c} with choose-
two menus included.

In Appendix A, we show that our Theorems 1 and 2 can be generalized to include choose-
k menus. The proof hinges on the fact that experiments remain convex on this expanded
permutohedron, a result leveraged in both of our theorems’ proofs. Recall that a set is convex
on the permutohedron if that set contains all of its shortest paths. In Proposition 1 we prove
that the partition created by any experiment using choose-one menus is a convex partition.
This proof relies primarily on Lemma 3, which shows that every shortest path between two
rankings contains a single instance of each of the pairs of objects for which those rankings
choose differently. This is the transposition set T(P,P ′).

For intuition for why convexity extends to this larger class of experiments, suppose that
an experiment including choose-k menus created a non-convex partition. This implies there
are two rankings P,P ′ who make the same choices in the experiment, but for which there is
some ranking P ′′ on a shortest path between P,P ′ that chooses differently in the experiment.
Thus, there must be some menu for which the ranking P ′′ chooses differently. Since P ′′

chooses differently, there must be some pair of objects x and x′ such that P and P ′ include
x but not x′ in their choice set from the relevant menu, but P ′′ includes x′ but not x. This
implies for P and P ′, x ≻ x′ but for P ′′ x′ ≻ x. However, this would imply that the pair {x, x′}
appears at least twice on a shortest path between P and P ′, violating Lemma 3.

Since, for each edge, including choose-k menus results in edge labels that are a superset
of the edge labels with exclusively choose-one menus, there are more options for covering
the edges between boundary pairs.

VII. PROPERTIES OF SHORTEST PATHS

Recall that a convex set on a graph contains all of its shortest paths. In Proposition 1,
we prove that every set in an experiment partition is convex (on the full permutohedron).
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This plays a key role in our proofs of Theorems 1 and 2. However, given the structure of our
proofs, it is easy to overlook the significance that shortest paths play in separating rankings.
In this section, we highlight some facts about shortest paths that might provide additional
insight into our results and the use of the labeled permutohedron in studying preferences.

As we show below, the labels on any shortest paths are a characterization of the sets
that can separate two rankings. Furthermore, while there may be multiple shortest paths
between two rankings, the collection of menus on those paths is identical. Thus, to separate
any two rankings, it is sufficient to pick any shortest path between the rankings and ensure
there is some menu on that shortest path included in the experiment.

Take, for example, the rankings P = abcd and P ′ = cadb. These differ by three trans-
positions: T(P,P ′) = {

{a, c}, {b,d}, {c,b}
}
. Consistent with Lemmas 2 and 3, both shortest

paths between the rankings have length three, and the three sets in T(P,P ′) appear exactly
once in the labels along the two paths. This is shown in Figure X. Notice that on the two
shortest paths: (abcd,acbd, cabd, cadb) and (abcd,acbd,acdb, cadb), the edge labels are
identical and include the sets {a, c}, {b,d}, {c,b}, {a,b, c}, {a, c,d}, {b, c,d}, {a,b, c,d}. The two
rankings choose differently from each set. For instance, abcd chooses b from {c,b} while
cadb chooses c. Furthermore, there is no other set for which these two rankings choose
differently.

FIGURE X. The Two Shortest Paths from abcd to cadb

We now prove these results formally. Most of the groundwork for this result was laid in
the lemmas leading to the convexity result in Proposition 1.

Proposition 2 (Characterization of Separation). Experiment D separates P from P ′ if and
only if on some shortest path W between P and P ′ there is at least one set D i ∈D such that
D i ∈ L(W).
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Proof of Proposition 2. For sufficiency, suppose D separates P from P ′, meaning there is
some D′

i ∈ D such that domP (D′
i) ̸= domP ′(D′

i). And, by way of contradiction, suppose that
for every shortest path W from P to P ′ we have that D∩L(W)=;, meaning no set from the
experiment appears along the path W . Pick any shortest path W = (P1, . . . ,Pv) with P = P1

and Pv = P ′. Then for every P j on W (with j < v) we have that D′
i ̸∈ L({P j,P j+1}), mean-

ing domP j (D i) = domP j+1(D i). Since this is true for all j < v we conclude that domP (D′
i) =

domP ′(D′
i), a contradiction.

Conversely, let W = (P1, . . . ,Pv) be a shortest path from P to P ′ (so P = P1 and Pv = P ′)
and suppose there is some D′

i ∈ L(W)∩D, but D does not separate P from P ′, meaning for
every D j ∈D we have domP (D j) = domP ′(D j). To simplify notation, for each 1 ≤ j ≤ v define
x j = domP j (D

′
i). Since D′

i ∈D and D does not separate P and P ′, it must be that x1 = xv. Now
let Pk be the first ordering in W = (P1, . . . ,Pv) such that xk ̸= xk+1; there must exist at least
one such ordering since D′

i ∈ L(W). And since Pk is the first such ordering, x1 = xk and so
xk = xv, yet xk ̸= xk+1. Since xk ̸= xk+1 we have that {xk, xk+1} ∈ T(Pk,Pk+1) (meaning Pk and
Pk+1 rank xk and xk+1 differently), which means {xk, xk+1} ∈ L(W). Also, {xk, xk+1} ̸∈ T(P,P ′)
because both P and P ′ select xk (over xk+1) from D′

i. But then the second part of Lemma 3
gives {xk, xk+1} ̸∈ L(W), which is a contradiction. □

Proposition 3 (All Shortest Paths have Identical Labels). L(W) = L(W ′) for every shortest
path between P and P ′.

Proof of Proposition 3. Suppose otherwise, there is a set D ∈ L(W) such that D ∉ L(W ′). Let
W ′ = (P1, ...,Pv). For all i < v, domPi (D)= domPi+1(D). Thus, domP (D)= domP ′(D). For the
rest of the proof, let x = domP (D) = domP ′(D). Along W ′, for every x′ such that x ̸= x′ ∈ D,
domPi

(
{x, x′}

)= domPi+1

(
{x, x′}

)
and so domP

(
{x, x′}

)= domP ′
(
{x, x′}

)
. Thus, {x, x′} ∉ T(P,P ′).

By Lemma 3, any set of two objects not in the transposition set of P and P ′ cannot appear
on a shortest path between the pair. Thus, for every shortest path W between P and P ′ and
every x′ such that x ̸= x′ ∈ D we have {x, x′} ∉ L(W). However, since D ∈ L(W), there is some
ranking P̃ on W such that x′ = domP̃ (D) ̸= x. The pair {x, x′} must be inverted at least once
on W and thus, {x, x′} ∈ L(W), a contradiction. □

VIII. USING THE THEOREMS TO FIND MINIMAL EXPERIMENTS

Suppose an experimenter wants to choose an experiment that is optimal in some well-
defined sense. For example, they want to test model M using the fewest number of questions
or at the lowest cost. Searching over the set of all possible experiments is obviously waste-
ful, as the number of possible experiments explodes double-exponentially. Specifically, with
|X | objects, the number of possible non-empty and non-singleton menus is 2|X |−1−|X | and
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so the number of non-empty experiments is thus 22|X |−1−|X |−1.17 For |X | = 3 there are 15
possible experiments, while for |X | = 6 there are over 144 quadrillion. However, our results
characterize the exact subset of experiments that test or classify a given model. This pro-
vides a “budget set” of experiments that one might consider. And then, given some objective
such as minimizing cost, one can search for the optimal experiment from within that budget
set. In this section, we formalize that process.

An experiment ordering > is a strict partial order on the set of experiments. When D′ >D

we say that D is smaller than D′. For example, D may be less costly or involve fewer
decisions than D′. An experiment D is minimal for testing M if D tests M and there is no
D′ testing M such that D >D′. Analogously, D is minimal for classifying M if it classifies M
and no smaller experiment classifies M.

One interesting objective is finding an experiment that requires the fewest choices. This
can be formalized through the (lexicographic) size ordering: Let D′ > D if (1) D′ contains
more menus than D, denoted |D′| > |D|, or (2) |D′| = |D| and

∑
D′∈D′ |D′| >∑

D∈D |D|.18 Through-
out this section, when we refer to a “minimal experiment”, we mean with respect to the
lexicographic size order, but we emphasize that our general results are not specific to a
particular experiment ordering.

In this section, we first describe an algorithm for finding minimal experiments. We then
show how minimal experiments can be used to help cluster subjects into economically-
meaningful types. Following this, we provide two examples of how minimal experiments
can be used to generate and study elicitation methodology in experimental economics.

An Algorithm for Finding Experiments of Minimal Size

We now show how identifying the minimal experiment under the lexicographic size order
can be solved as a straightforward integer binary linear program. Extending this idea to
other experiment orderings is straightforward.

The algorithm can be understood as consisting of two major parts. First, we apply the
relevant boundary pair theorems to determine the boundary pairs and the sets on the edges
between those boundary pairs. This part depends on whether a restricted model is being
classified (applying Theorem 1 or 2). Once the boundary pairs and sets on each edge have

17There are 2|X | subsets, minus the empty set and the |X | singleton sets. So there are 22|X |−1−|X | sets of subsets.
We remove the empty experiment to get 22|X |−1−|X |−1.
18This particular ordering is complete but not total. There may be multiple minimal experiments that achieve
some objective. When including choose-k menus, choosing the experiment ordering is not as straightforward
when the goal is to minimize the number of subject choices. For instance, it is not obvious whether the
single-menu experiment D1 = {a,b, c} : 2 is larger, smaller, or equal to the experiment with D1 = {a,b} : 1 and
D2 = {a, c} : 1.
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been enumerated, the algorithm proceeds to solve the resulting set cover problem by con-
verting it into a linear program. This part is identical whether or not the model is restricted.

Algorithm:

1. Input a model M over objects X .
2. Is the model complete or not?

2.a. Complete Model (or Testing a Model): For each pair of rankings P and P ′ in
different sets in M, find the transpositions T(P,P ′). If the |T(P,P ′)| = 1, rankings
are a boundary pair.

2.b. Restricted Model: For each pair of rankings P,P ′ that are not in M0 but are in
different sets in M, determine the transpositions: T(P,P ′). If no other P ′′ ∉ M0

is such that T(P,P ′′)⊂ T(P,P ′) then P and P ′ are a boundary pair.
3. For each boundary pair {P,P ′}, determine the sets in L({P,P ′}) for which P and P ′

choose differently.19

4. Let E = (E1, ...,Em) be the set of m boundary pairs and S = {S1, ...,Sl} be the union of
the sets appearing on the edges of those boundary pairs (note that |S| = l). Construct
an m× l matrix O such that O(i, j) = 1 if set S j appears on the edge for boundary pair
i, and O(i, j) = 0 otherwise.

5. Construct a lexicographic cost vector c of length l where c j = 1+ |S j |
|X |·l .

20 (Different
cost functions can be used here to represent different experiment orderings.)

6. Solve the resulting set cover problem by integer binary linear programming. Below,
vectors are column vectors, 1m is the length-m vector of ones, and cT is the transpose
of c.

Minimize cT · x
subject to O · x ≥ 1m and x ∈ {0,1}l

7. Each solution x∗ defines a minimal experiment, wherein the minimal experiment
includes S j if and only if x∗j = 1. The constraint O · x ≥ 1m ensures that at least one
menu from every edge between boundary pairs is included in the experiment.

Example Consider the goal of classifying and testing the model from Section II given by
t1 = {abc,acb}, t2 = {bac}, t3 = {cab}, and M0 = {bca, cba}. There are four boundary pairs:
{bac,abc}, {bac,bca}, {cab,acb}, and {cab, cba}. Thus, m = 4. The sets on the edge between

19Recall from above the simple characterization of these sets: If T(P,P ′) = {{x, x′}} then define B({x, x′};P) =
{x, x′}∪ {z ∈ X : (∀y ∈ {x, x′}) yPz}. Then D i ∈ L({P,P ′}) if and only if (1) D i contains {x, x′}, and (2) D i ⊆
B({x, x′},P). Thus, |L({P,P ′})| = 2|B({x,x′},P)|−2.
20For this vector, the cost of any set is 1 plus a weighted size of the set. Reducing the selected sets by one set
will decrease cost by at least 1. The number of total objects (including repetitions) appearing in the chosen
sets can never be more than |X |· l since |X | is the number of objects and l is the total number of sets appearing
on the edges between boundary pairs. Thus, the weight 1

|X |∗l ensures the costs are lexicographic, prioritizing
the number of sets over set size.
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each boundary pair, respectively, are
{
{a,b, c}, {a,b}

}
,

{
{a, c}

}
,

{
{a,b, c}, {a, c}

}
, and

{
{a,b}

}
.

There are three unique sets on these edges, given by S1 = {a,b, c}, S2 = {a,b}, and S3 = {a, c},
so l = 3. The matrix O and the vector c are therefore:

O =


1 1 0
0 0 1
1 0 1
0 1 0

 and c =

 1+ 3
12

1+ 2
12

1+ 2
12

 .

The resulting linear program is minimized at x = (0,1,1)⊺ which corresponds to minimal
experiment

{
{a,b}, {a, c}

}
. To confirm each relevant edge is covered, note that Ox = (1,1,1,1)⊺.

We do not claim that this algorithm is particularly efficient or can scale to find minimal
experiments of arbitrary complexity. While our boundary pair result drastically reduces the
complexity of finding a minimal experiment relative to brute force search, both finding the
boundary pairs for a model and solving the resulting set cover problem are computationally
difficult.21

In Appendix B we provide results of simulations for finding minimal experiments for ran-
domly generated models with numbers of objects ranging from |X | = 4 to 10 and the number
of types (each with three rankings) ranging from 2 to 7. We ran 100 models for each combi-
nation of these parameters and, for each random model, found the minimal experiment for
classifying only as well as testing and classifying. Runtime grows exponentially with |X |.
Although runtime also grows with the complexity of the model (number of types), |X | is the
dominant driver.

Despite exponential growth, the algorithm remains practically useful for moderately sized
models where manual search or brute force would be difficult or impossible. Most trials were
completed in seconds.22 We offer the following example which also demonstrates the ability
of this algorithm to extract patterns in models that are not easily seen otherwise.
Example (Nine-Object Experiment). Consider the following (randomly generated) restricted
model over nine objects with X = {a,b, c,d, e, f , g,h, i}:

t1 = {dcaf iehbg, cdgeiaf hb, ecigbhaf d}

t2 = {gai f bdceh, gdhaf cieb,acdbeihg f }

t3 = {bf aehdigc,dhbegc f ai, gf dbichae}

The number of possible experiments for nine objects has 152 digits. Despite this com-
plexity, the algorithm presented above finds a minimal experiment to classify this restricted
model in about three seconds. The computer spends roughly equal amounts of time applying

21Set cover problems are generically NP-hard (Korte and Vygen, 2008).
22Our code is not extensively optimized and ran only on a single core.
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the boundary-pair theorem and solving the resulting linear programming problem for set-
selection. It has just one menu: {a,b, c}.23 To confirm this classifies the model, notice that in
t1 every ranking would choose c. In t2, every ranking would choose a. In t3, every ranking
would choose b. It is remarkable how quickly the algorithm finds this pattern, though it is
obvious in hindsight.

This example demonstrates another way of thinking about minimal experiments. If an ex-
periment classifies a model, the sets of choice profiles for that experiment represent choice
patterns that fully describe the model. In this sense, a minimal experiment extracts the
smallest set of choice patterns that fully describe a model. In the next section, we lever-
age this observation and show how minimal experiments can be used to interpret non-
parametric preference clusters.

Application: Non-Parametric Preference Clustering

Clustering can be seen as an approach to building a model (determining types) from data.
For example, Fehr and Charness (2025) report that social preference data from a broad pop-
ulation of subjects tends to produce three qualitative types: “Altruistic”, “Inequality Averse”,
and “Predominantly Selfish.” A clustering such as this can be viewed as a model in our
framework. And this cluster-based model can then be used to classify future subjects.

Specifically, we envision a research agenda that proceeds as follows: (1) Have a “training
set” of representative subjects participate in an experiment that elicits their entire ranking.
This experiment might require the subject to make many choices, though there are ways
to incentivize reports of an entire ranking (Bateman et al., 2007). (2) Use an established
clustering technique to sort preference orderings into clusters, each of which becomes a type
in our framework. We describe one such technique below. A distance metric such as Kendall
tau may be used to identify preferences that are “near enough” to a given cluster to be in-
cluded in that cluster. And the researcher may choose to leave some orderings uncategorized
if they are considered too far from any given cluster. The result will be a model M that is
complete if all orderings are categorized or restricted if some are not. (3) Use the algorithm
above to identify a minimal experiment D to classify model M. This experiment can be used
to provide interpretation of the various clusters, as we demonstrate below. (4) If desired,
run experiment D on a new “testing set” of subjects to estimate the population frequency of
each identified type. Using a minimal experiment ensures this estimation is done efficiently

23For testing and classifying the model, the minimal experiment is substantially more com-
plex, but the algorithm still produces a 24-menu minimal experiment in about 3.5 seconds:
{c,d,h},{a, c, g},{a, f },{ f ,h, i},{b, e, i},{e, g, i},{e,h},{b,h},{b, g},{d, g, i},{a, i},{b, f ,h},{c, e,h},{c, i},{g, i},{a,h},
{d, f },{b,d},{c, f },{b, e},{g,h},{ f , g},{a, e},{c, g}. While complex, we note that the experiment contains 12 fewer
menus than the experiment that includes every binary pair, which would require 36 menus.
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and does not require entire preference orderings to be revealed. In some contexts, this may
also be preferred by subjects concerned about privacy.

In the Fehr and Charness (2025) example above, the clusters each have a clear interpre-
tation, but in many settings they do not (see Bertsimas et al., 2021). One benefit of the
minimal-experiment approach is that the choices each type would pick in the minimal ex-
periment can actually provide an economic interpretation of each type. As a very simple
example, if the minimal experiment for some three-type clustering consisted of the single
menu D1 = {a,b, c} then the clusters would be defined as “those who like a,” “those who
like b,” and “those who like c.” Thus, the various clusters can be interpreted simply by the
choices that are used to identify them.

Step (2) of the above procedure requires a statistical method to identify clusters in the
training data. One common method is to use a “mixture model,” where the data is as-
sumed to be generated by a collection of predefined sub-models. Often, each sub-model (or,
cluster) is defined by a central ranking and a dispersion parameter that allows for some
(probabilistic) deviation from that central ranking (Murphy and Martin, 2003, e.g.). There
are also non-parametric approaches for clustering, such as Partitioning Around Medoids
(PAM). PAM begins by selecting n representative points in the dataset, called medoids, as
initial cluster “centers.” Each data point is then assigned to the cluster corresponding to
the nearest medoid according to a chosen distance measure, such as Kendall tau. The algo-
rithm iteratively swaps existing medoids with non-medoids, evaluating whether the swap
reduces the total dissimilarity between points and their assigned medoids. This iterative
“hill-climbing” optimization continues until no further improvement is possible (see Kauf-
man and Rousseeuw, 2009, e.g.).

Although not often used on preference or choice data, PAM is a compelling option for our
purposes. It is a simple method that relies only on a calculated proximity matrix and does
not hinge on any distributional assumptions. However, unlike parametric mixture models,
this approach does not provide information about the spread or diversity of the rankings
within the cluster, making it harder to interpret. PAM represents a cluster only by a single
medoid, typically used as a representative for interpretation (Everitt et al., 2011). But there
is no guarantee that the characteristics of the medoid accurately reflect the characteristics
of the entire cluster. Here, the choices each cluster would pick in the minimal experiment
may provide a more intuitive interpretation of the various clusters, as described above.

To demonstrate this approach—and keeping with the breakfast theme established in our
introduction—we apply PAM to cluster data from Green and Rao (1972), which includes
preferences among seven breakfast items for 42 subjects.24 We use the Kendall tau distance
(the number of transpositions between two rankings) for proximity. It is also the length of
24To simplify the data, we removed several highly correlated items such as “hard rolls with butter” and “but-
tered toast.”
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any shortest path between two rankings in the permutohedron (see Section VII). For illus-
trative purposes, we calculate a two-cluster solution. The two medoids identified, labeled as
P∗

1 and P∗
2 , appear in Table I. All rankings observed from the 42 subjects are assigned to

the cluster whose medoid is closer, and any ranking not observed is considered outside the
model (thus, in M0).25

Rank P∗
1 P∗

2
1 Coffee Cake Buttered Toast
2 Blueberry Muffin English Muffin
3 Cinnamon Toast Cinnamon Toast
4 Jelly Donut Coffee Cake
5 English Muffin Jelly Donut
6 Buttered Toast Toast Pop-up
7 Toast Pop-up Blueberry Muffin

TABLE I. The medoids of the PAM clustering of breakfast item preferences
from Green and Rao (1972).

Can we use these two medoids to “eyeball” an interpretation of the two clusters? For
example, it might be tempting to say that cluster 1 likes blueberry muffins, while cluster 2
does not. But it turns out that this is not an accurate representation of all preferences in
each cluster: There is a ranking in cluster 2 that actually ranks blueberry muffins first. Or
it may appear that cluster 1 prefers coffee cake while cluster 2 prefers buttered toast, but
this is also inaccurate since there is a ranking in cluster 1 that ranks buttered toast higher.
Instead, if we find a minimal experiment for classifying these two clusters, then the choices
separate the clusters, and so the experiment can be used to help interpret the difference
between them.

To illustrate, the minimal (in terms of size) experiment for classifying these two clusters
consists of three menus:

D1 = {Coffee Cake, Buttered Toast},

D2 = {Jelly Donut, Blueberry Muffin}, and

D3 = {Toast Pop-up, Jelly Donut}.

25Alternatively, one could generate a complete model by taking a type to be all rankings closest to some
medoid whether they appear in the data or not. This would, however, force the resulting minimal experiment
to separate potentially “unusual” rankings that would never be observed.
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There are eight combinations of choices a subject could make from these three binary menus.
And which combination a person chooses perfectly identifies to which cluster they belong.
As shown in Table II, four of these choice combinations lead to a subject being classified in
cluster 1, three lead to cluster 2, and one leads to a subject being classified as outside the
model.

Choices From Number of
Cluster D1 D2 D3 Subjects

1 Coffee Cake Blueberry Muffin Jelly Donut 13
Coffee Cake Jelly Donut Jelly Donut 13
Coffee Cake Blueberry Muffin Toast Pop-up 2
Buttered Toast Blueberry Muffin Jelly Donut 1

2 Buttered Toast Blueberry Muffin Toast Pop-up 8
Buttered Toast Jelly Donut Jelly Donut 4
Buttered Toast Jelly Donut Toast Pop-up 1

None Coffee Cake Jelly Donut Toast Pop-up 0

TABLE II. The choice combinations that lead to classifying a subject into each
cluster given by the PAM clustering procedure.

Table II reveals that clusters are almost perfectly determined by the choice from D1;
people are either a “coffee cake type” or a “buttered toast type.” The one exception (which
consisted of a single subject here) is that if someone likes buttered toast, then we need their
other two choices to see if they should actually be in cluster 1.

In fact, one could use this minimal experiment to redefine the clusters given by the PAM
procedure, moving the one exception from cluster 1 into cluster 2. The new model would
have a very simple interpretation: those who like coffee cake and those who like buttered
toast. And the minimal experiment for classifying these new clusters is very simple, con-
sisting only of D1.

Alternatively, the orderings consistent with the one exceptional choice combination could
be dropped from the model and moved into M0 (the “None” category in Table II). If, for
example, we remove the 10% of rankings from each cluster that are farthest from their
associated medoid, then this combination of choices is removed from the model and the
minimal experiment again reduces to D1. Doing so leaves unchanged the classification
of 97.6% of the 42 subjects (all but one) and, therefore, is arguably a small change that
significantly simplifies the clusters.
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This suggests that the size of the minimal experiment could even be used as a measure of
the complexity of a clustering. The original clusters in Table II required three binary-choice
menus, while the modified versions require only one.

Our example uses the PAM clustering method, but we emphasize that the same approach
could be used to aid interpretation for any clustering method, including more traditional
mixture models. In fact, the clusters may come from a researcher’s prior over preferences
based on past work, and not from a new “training set” of subjects. Regardless of how the clus-
tering is formed, the minimal experiment provides the simplest way to classify data collected
in the future into precalculated clusters without collecting complete rankings. This could
be beneficial in experimental economics to classify subjects quickly in follow-up studies. It
could also be useful in consumer preference analysis to quickly classify new consumers into
preference clusters for use in marketing, recommendations, or demand estimation.26

Application: Eliciting Ranges of Beliefs

Suppose a researcher wants to elicit a subjective probability p that an event E will occur.
And suppose the researcher does not need a precise belief; it is sufficient to categorize the
belief into three categories: p ∈ [0,0.4), p ∈ (0.4,0.6), and p ∈ (0.6,1]. There are three rele-
vant choice objects available: l0.6 is a lottery that pays $10 with objective probability 0.6, t
(for “true”) is an act that pays $10 if event E is true, and f (for “false”) is an act that pays
$10 if E is false.

In terms of these objects, the three belief categories can be represented by a model with
three types: Beliefs p ∈ [0,0.4) correspond to the singleton type t1 = { f l0.6t} (meaning f ≻
l0.6 ≻ t), beliefs p ∈ (0.4,0.6) correspond to the type t2 = {l0.6 f t, l0.6t f }, and beliefs p ∈ (0.6,1]
correspond to the type t3 = {tl0.6 f }. The rankings outside the model are those for which l0.6

is ranked last (M0 = {t f l0.6, f tl0.6}).
To classify the restricted model, we construct the restricted permutohedron.27 In this

case, the restricted permutohedron is simply the graph induced by removing the vertices in
M0 from the permutohedron.28 The restricted permutohedron for this model is shown in the
left panel of Figure XI.

26See Müllensiefen et al. (2018), which discusses the use of clustering to understand brand preferences.
(Zhang et al., 2016) discusses the use of clustering to improve recommendation systems.
27Recall that classifying a restricted model implies the researcher assumes preferences in M0 are impossible.
Here, rankings in M0 are impossible under the assumption that each individual has a subjective probability
p ∈ [0,1] for event E, 1− p for its complement, and orders all bets by their probability of $10.
28Recall from Section V there are some models where the construction of restricted permutohedra requires
creating new edges. However, here, the remaining vertices are still connected after deleting all the vertices in
M0 and their associated edges.
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FIGURE XI. The restricted permutohedra for three-category (left) and five-
category (right) belief elicitation. Only the edges between boundary pairs
(shown in bold) have been labeled. Menus used in the minimal experiment
are shown in bold.

The minimal experiment (in terms of size) for the three-category belief elicitation involves
just one set: D1 = {t, f , l0.6}. This set appears on both edges between the two boundary pairs
on the restricted permutohedron. The experiment might appear this way:

Choose how you would most like to be paid. At the end of the experiment, you will
receive your chosen payment option.

$10 if E occurs $10 if E does not occur $10 with a 60% chance

Suppose we expand the categorization to have five types: p ∈ [0,0.2), p ∈ (0.2,0.4), p ∈
(0.4,0.6), p ∈ (0.6,0.8), and p ∈ (0.8,1]. Letting l0.8 be the lottery that pays $10 with proba-
bility 0.80, this can be represented by the following restricted model:29

t1 = {tl0.8l0.6 f } , t2 = {l0.8tl0.6 f } , t3 = {l0.8l0.6t f , l0.8l0.6 f t} , t4 = {l0.8 f l0.6t} , t5 = { f l0.8l0.6t}

The restricted permutohedron for this model, shown in the right panel of Figure XI, is the
four-object permutohedron with the 18 rankings from M0 removed. From this, we can see
that the minimal experiment is D1 = {t, f , l0.6} and D2 = {t, f , l0.8}.30 The experiment might
appear this way:

29The rankings outside the model M0 have not been written, but are the other 18 rankings. They are the 12
rankings with l0.6 ≻ l0.8 and the 6 rankings with l0.6 ranked last.
30The algorithm for finding minimal experiments presented later in this section reveals that a minimal ex-
periment for testing and classifying this model can be achieved with four sets: D1 = {l0.8, f , t}, D2 = {l0.8, l0.6},
D3 = {l0.6, f }, and D4 = {l0.6, t}. Notice that D2 tests whether l0.8 ≻ l0.6 and D3 and D4 jointly test whether l0.6
is preferred to at least one of t and f while also aiding in classification.



EXPERIMENTS 37

In each row below, choose how you would most like to be paid. At the end of the ex-
periment, one row will be chosen at random, and you will receive your chosen payment
option.

$10 if E occurs $10 if E does not occur $10 with a 80% chance

$10 if E occurs $10 if E does not occur $10 with a 60% chance

It is also possible to find the minimal experiment for belief elicitation with a larger num-
ber of categories. As long as there is an odd number of categories and those categories are
symmetric around 0.5 (as they are in these two examples), the minimal experiment has a
similar structure. Specifically, each menu offers three options: bet t, bet f , and some lp. We
call these ternary price lists. Healy and Leo (2025) expands on the theory of ternary price
lists and demonstrates that they have theoretical properties that improve on the two exist-
ing methodologies for belief elicitation: binary price lists and binarized scoring rules. We
believe this example demonstrates the practical value of our results to help generate novel
and useful experimental methodologies.

Application: Minimality of Price Lists

Multiple price lists (MPLs) present subjects with a structured series of binary choices, typ-
ically in a table format, and are used to bound indifference points in a preference relation.
Many MPLs have a simple structure. In each binary choice, there is one fixed object and one
object that changes across the rows/choices. Such MPLs have been used in a variety of con-
texts, including in eliciting willingness-to-pay, risk preferences, and time preferences (Holt
and Laury, 2002; Andersen et al., 2006). In this section, we demonstrate that the ubiquity
of price lists might be partially due to the fact that they are minimal (in terms of size)—even
among extended experiments—for a certain class of restricted models.

Let A = {
a1, ...,a|A|

}
be a set of objects (such as dollar amounts) with a natural ordering

such that it is reasonable to assume ai ≻ a j if and only if i < j. Consider the goal of learning
about preferences on the set X = A× {x}, where x is the object of interest and the researcher
wants to know how x ranks among the ordered items in A. For example, if A consists of
dollar amounts and x is a cheeseburger, finding the ranking of x among A gives an estimate
of the subject’s willingness to pay for the cheeseburger. Let Pi be the order where x is ranked
below i+1 elements of A so that:

P1 = xa1...a|A|, Pi = a1...ai−1xai...a|A|, P|A|+1 = a1...a|A|x

This goal can be written as the following restricted model with types t1 = {P1}, ..., ti =
{Pi}, ..., t|A|+1 = {P|A|+1}. We refer to such a model as a linear preference model. The restricted
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permutohedron for a linear preference model is a path (linear) graph that is a convex set
in the full permutohedron of these objects. Thus, the shortest path between each of the
rankings remains intact in the restricted permutohedron. Every pair of the form (Pi,Pi+1)
is a restricted boundary pair, since the rankings differ by a single adjacent transposition
and every ranking is in a singleton set in the restricted model.

Allowing extended experiments (including choose-k menus), the set of menus on the edge
of the boundary pair (Pi,Pi+1) consists of all menus of the form {x,ai}

⋃
Ã : k where Ã ⊆{

a1, ...,a|A|
}
\ai and there are k−1 elements a ∈ Ã such that a ≻ ai. All such menus are such

that the kth choice of Pi is ai while the kth choice of Pi+1 is x. For example, {x,ai} : 1 and
{x,ai,ai−1} : 2 are on the edge as long as i ≥ 2.

A consequence is that the menus on the various edges of the restricted permutohedron
(which are all between boundary pairs) are disjoint. Since the experiment must contain a
menu from every edge between boundary pairs, the experiment must contain at least |A|
menus. To find the minimal experiment in terms of size, choose the smallest menu on each
edge, which is {x,ai} : 1. This yields an experiment with menus D i =

{
{x,ai} : 1

}|A|
i=1, which is

exactly a multiple price list (MPL).

IX. DISCUSSION

Throughout the paper, we assume that preferences and choices are deterministic. One could
imagine that subjects instead make stochastic or “noisy” choices. As mentioned in the In-
troduction, our framework cannot be used to study stochastic choice for a variety of reasons.
However, a direction one could take is an econometric estimation (rather than exact iden-
tification) of stochastic choice functions. This likely would require larger-than-minimal ex-
periments, compared to the deterministic case. While considering such a framework would
certainly be useful, it deviates too far from the structure assumed here and is therefore left
for future work.

In relation to this problem, researchers may be able to leverage redundant sets to de-
termine if subjects are choosing stochastically. Whenever there are two or more distinct
sets on an edge between boundary pairs, multiple sets can be included in the experiment to
“cover” that edge. Since only one set is required for each boundary pair, by including mul-
tiple sets the data becomes redundant and can classify subjects even if choices from one of
the redundant sets are removed from the data. This allows researchers to classify subjects
using distinct sets of choices. If a subject is classified into different types using different
data sets generated in this way, this refutes the assumption of deterministic preferences
and therefore provides strong evidence that they are choosing stochastically.

There are obvious similarities between our approach and that taken by the revealed pref-
erence literature. Both are interested in understanding when a model can be tested and
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when it cannot. The difference is that the revealed preference literature typically fixes a
certain type of choice menu (for example, linear budget sets) and asks which choices from
those menus would be consistent with a given model. However, there is typically no re-
quirement that the data be rich enough to guarantee that the test will be conclusive. Our
approach instead searches for choice menus from X such that the resulting data will always
be rich enough to guarantee a conclusive test.

To illustrate the difference, consider the following revealed preference theorem due to
Fishburn (1975): Given is k binary menus of the form D i = {pi, qi}, where each pi and qi

are simple lotteries. Suppose (without loss) that pi is chosen in each menu.31 This vector of
choices is consistent with expected utility maximization if and only if there is no probability
distribution λ ∈∆({1, . . . ,k}) over decision problems such that

∑k
i=1λi pi =∑k

i=1λi qi. In other
words, there is no “first stage” lottery λ such that the compound lottery of λ over (pi)k

i=1 and
the compound lottery of λ over (qi)k

i=1 reduce to the same simple lottery.
In Fishburn’s theorem, the choice menus are required to be binary menus, but if the num-

ber of menus is small, then the experiment may fail to detect violations of expected utility.
Our approach instead takes a set of possible lotteries X as fixed and asks which choice
menus from X could be used so that, regardless of what data is observed, the researcher
will be able to conclude definitively whether expected utility is satisfied on X .32

For example, suppose a, b, c, and d are all lotteries, that a, b, and c form the vertices
of a triangle in the simplex, and that d is in the interior of that triangle. Expected util-
ity preferences have linear indifference curves and thus would require that d (the interior
point) is never ranked first or last; beyond that, all other orderings are permissible. To see
how Fishburn’s theorem applies, consider the experiment D1 = {a,d}, D2 = {a,b}, D3 = {b, c}.
We take this experiment as fixed; it is not chosen to be optimal in any way. A subject with
preference ordering dabc (which violates expected utility since d is ranked first) will choose
(d,a,b) from these three menus. The three unchosen items are (a,b, c). Since we can find a
vector λ such that λ · (d,a,b) = λ · (a,b, c), we verify that expected utility is rejected.33 But
a subject with preference abcd (which also violates expected utility) would choose (a,a,b),
and there is no λ such that λ · (a,a,b) = λ · (d,b, c). Thus, this experiment does not identify
all expected utility violations over these four options.

Our approach instead demands that the experiment be designed so that the test is always
conclusive. Using our algorithm, we find that the minimal experiment for testing expected
utility on these four objects is given by D1 = {a,d}, D2 = {b,d}, and D3 = {c,d}. Any subject

31Fishburn’s theorem requires that at least one choice represents a strict preference. In this paper, we assume
all preferences are strict.
32If X does not contain all possible choice objects then of course our approach may also fail to detect violations
of the model if they occur outside of X .
33Specifically, if d = α1a+α2b+α3c then λ1 = 1/(α1 +2α2 +3α3), λ2 = (α2 +α3)/(α1 +2α2 +3α3), λ3 = α3/(α1 +
2α2 +3α3).



40 HEALY & LEO

who violates expected utility on this domain will either pick d in all three menus or in none
of them. And any subject consistent with expected utility would pick d in one or two menus.
Thus, this experiment perfectly separates those who violate the model from those consistent
with it.

In addition, our method can also be used to classify subjects within a given model. For
example, it can be used to find in which range a subject’s risk aversion parameter lies.
The revealed preference literature typically does not focus on these “type identification”
exercises; in most applications, type identification is econometric rather than deterministic.

There could also be settings where a researcher wants to add constraints on which types
of menus are used in their experiment. For example, they may want to restrict their experi-
ment to contain only binary choice menus. The permutohedron approach could still be used,
and the constraint on admissible menus would be added when searching for a set of menus
that covers the set of boundary pairs for the model. For example, in Part 2 of our algorithm,
let O(i, j) = 1 if set S j appears on boundary pair i and satisfies the new constraint. Under
some constraints a solution may no longer exist, though if the constraint admits at least all
of the binary menus, then a solution must exist since the entire preference relation can be
elicited via binary menus.

Another benefit of our approach is that models are defined very generally and can be
applied at different “levels” of analysis. For example, consider one researcher interested in
classifying subjects according to the rank-dependent expected utility model (RDEU; Quiggin
(1982)). For them, the relevant model would have types that represent different probability
weighting functions or different levels of risk aversion. Another researcher might instead
be interested in testing the comonotonic sure-thing principle, which is a fundamental axiom
of RDEU. For this researcher the model would have two types: those preferences orderings
that satisfy the axiom, and those that do not. Thus, any sort of testing or classifying exercise
can fit into our framework by defining the model appropriately for the given problem.

One limitation of our method is it takes as given the set of alternatives X .34 Definitively
testing a model such as expected utility is easy when X contains few elements, but if X is
large then minimal experiments may become complex and hard to compute. In that case,
it may be worthwhile to choose both which X ′ ⊆ X to use as the space of alternatives, and
which experiment is minimal for X ′. When studying expected utility, for example, what
finite set of lotteries X ′ would be sufficient for the experimenter’s purpose? Here, false
positives (failures to reject the model) become problematic, as compliance with the theory
on X ′ does not imply compliance on all of X . Similarly, types on X ′ are necessarily coarser
than those on X , so classification becomes less precise as X ′ becomes relatively small. Thus,

34The revealed preference approach has a similar domain restriction: It takes the experiment D as given.
Consequently, the model can only be tested on the domain X =⋃

S j∈D S j.
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the size of X ′ represents a trade-off between the size of the resulting minimal experiment,
the fineness of types one can separate, and the frequency of false positives we might expect
in the full domain. How to choose X ′ optimally given these trade-offs remains an interesting
and important open question, and one that likely depends on the experimenter’s particular
objective.

Another interesting open question is what can be said if we relax the assumption of tran-
sitivity. In that case, we might replace preference orderings with choice functions that iden-
tify a choice for each possible menu D. For example, with X = {a,b, c} there are 24 possible
choice functions. Then we can define a graph similar to a permutohedron with choice func-
tions as vertices, where two choice functions are neighbors if they differ only in their choice
in one menu. For X = {a,b, c} this graph would have 24 vertices each with 5 edges, for a
total of 60 edges. Each edge is then labeled with the (unique) menu that separates those
two choice functions. Any model would then be a partition of this graph, just as in the case
of permutohedra with transitivity. We conjecture that our results would go through: An
experiment would classify a complete model if and only if it separates every boundary pair
on this graph. Unfortunately, this approach requires greater computation to construct the
relevant graphs, since there are many more nodes and edges.35

We also conjecture that if we consider any choice-function model that assumes transitivity
and nothing more (meaning M0 contains exactly those choice functions that violate transi-
tivity) then we can construct the “restricted choice-function graph” following the procedure
from Section V and the result will be the original permutohedron. Thus, transitivity itself
can be viewed as a model in this larger framework, and our methods can be used to derive
the permutohedron as the relevant graph for that case.36

Our approach uses an “all-or-nothing” approach to testing a model, requiring that sub-
jects be perfectly classified into one of several preference types. But what if the researcher
has a prior over which types (or which preferences) are most likely and is mainly inter-
ested in distinguishing those that are more likely? This can be accommodated in two ways:
First, the researcher can simply coarsen the model by either combining or removing unlikely
types. The resulting minimal experiment would necessarily shrink as a result. Second, the
researcher can generate the minimal experiment for the original model, but then remove

35For complete models under the choice function approach, the set-selection step of finding a minimal exper-
iment becomes trivial since each edge contains only one menu. In this sense, comparing the overall com-
putational requirements between the preference ordering and choice function approaches will depend on the
particular model being tested or classified.
36Similarly, it may be possible to generalize the labeled permutohedron to include indifference by constructing
a graph with weak orderings as the vertices. However, the weak incentive compatibility problem would cause
issues for the real-world reliability of type identification.
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menus from that experiment which they believe are unlikely to be consequential. The (M0-
restricted) experiment partition from this simplified experiment would then constitute a
new model, and it may be coarser than the original.

In Section VIII, we focus primarily on minimizing the number of choice tasks asked of the
subject. However, this is just one possible ordering over experiments. Our main theorems
are not specific to this particular ordering. Other orderings may apply in certain settings.
For example, a researcher with a tight budget may want to minimize costs. This can be
achieved using our methods by assigning an expected (or maximal) cost to every menu. Ex-
periments can then be ordered on the basis of the average (or maximum) of these menu
costs. The labeled permutohedron approach can then be used to identify the cheapest ex-
periment that tests or classifies a given model. Another possible ordering would be based
on subjects’ privacy. If the experimenter can assign a “privacy cost” to each experiment, or
to each menu, then it is possible to order the experiments in terms of their expected privacy
loss. Our approach can then identify the experiment that tests or classifies a model with the
smallest loss in privacy.
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ONLINE APPENDIX: NOT INTENDED FOR PUBLICATION

APPENDIX A. PROOFS FOR EXTENDED EXPERIMENTS USING CHOOSE-k MENUS

We begin this section by extending our framework to choose-k menus. An extended ex-
periment is a family of tuples D e = {(D1,k1), (D2,k2), ..., (Dn,kn)}. Typical elements (D i,ki)
consist of a menu D i ⊆ X with |D i| ≥ 2 and number of choices ki < |D i|. The interpretation
is that each D i is a menu from which the subject must choose their top ki most-preferred
elements. We define the following choice function:

domk
P (X ′)= {C ⊆ X ′ : |C| = k,∀(x, y) ∈ C× (X ′\C) : xP y}.

Since all orders are assumed to be antisymmetric, domk
P (X ′) is unique. Our definition of

separated pairs for extended experiments simply adopts this extended choice function:

Definition 9 (Separation with Extended Experiments). Fix an extended experiment D e.
Two orders P and P ′ are separated by D e (or, {P,P ′} is a separated pair) if there exists some
(D i,ki) ∈D e such that domk

P (D i) ̸= domk
P ′(D i).

Our definitions of the experiment partition RD e , as well as testing and classifying models
using an extended experiment, follow as expected from this modified definition of separated
pairs.

Proposition 4 (Extended Experiments are Convex). Every extended experiment partition
RD e is convex.

Proof. Suppose the proposition was false, then there is some set in RD e that is non-convex.
Thus, some pair of rankings P and P ′ are such that P ′ ∈ r(P) but there is some shortest path
W between them that does not remain inside r(P).

There must be some P ′′ on W such that r(P ′′) ̸= r(P), thus there is some set (D i,ki) ∈
D e for which C = domki

P (D i) ̸= domki
P ′′(D i) = C′′. However, since r(P) = r(P ′), domki

P (D i) =
domki

P ′(D i) = C. Since C ̸= C′′ there is some x ∈ C, x′′ ∉ C, x′′ ∈ C′′, x ∉ C′′. Thus, for P and
P ′, xPx′′, xP ′x′′ and for P ′′, x′′P ′′x. Thus, x and x′′ must be inverted at least twice on the
path W and so the set {x, x′′} appears at least twice on some shortest path from P to P ′,
contradicting Lemma 3.

□

Extending this proposition immediately extends the proof of Theorem 1 simply by replac-
ing instances of choose-one experiments D with extended experiments D e. We have included
the formal proof below for completeness.

We begin by extending Lemma 4 to extended experiments.
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Lemma 6 (RD e Refines M). If D e classifies M then RD e is a refinement of M, meaning every
r i ∈ RD e is a subset of some ti ∈ M

Proof. The proof of this lemma is by contradiction: If RD e were not a refinement of M then
there would be an r i that intersects two different types ti and t j. But then there would be
some differentiated pair P ∈ ti and P ′ ∈ t j such that r(P) = r(P ′) = r i, meaning D e fails to
separate this differentiated pair. □

Theorem 3 (Generalization of Theorem 1 to Extended Experiments). The following are
equivalent:

(1) Experiment D e classifies a complete model M = (t1, . . . , tn),
(2) D e separates every boundary pair for model M, and
(3) The experiment partition RD e is a refinement of the model partition M.

Proof of Theorem 1. Equivalence between (1) and (3) follows immediately from definitions,
so we focus on proving that (1) if and only if (2).

Necessity is simple: If D e classifies M then all differentiated pairs are separated by D e,
and so every boundary pair must also be separated.

For sufficiency, we will use Lemma 6 to prove the contrapositive: if D e fails to separate
some differentiated pair {P,P ′} then it must also fail to separate some boundary pair {P̂, P̂ ′}.
Since {P,P ′} is differentiated, we have that t(P) ̸= t(P ′). But if D e fails to separate them then
r(P)= r(P ′).

Since every experiment D e produces a convex partition RD e by Proposition 4, there is a
path from P to P ′ entirely in r(P). Since t(P) ̸= t(P ′), there is some first pair of neighbors
on this path P̂ and P̂ ′ where t(P̂) ̸= t(P̂ ′). But since this path lives entirely inside r(P), so
r(P̂)= r(P̂ ′). Thus, we have a boundary pair that is not separated, completing the proof.

□

We now extend Theorem 2. This relies critically on the extension of Lemma 5— that the
experiment partition on the restricted permutohedron is a set of connected subgraphs. How-
ever, this follows immediately from the extension of convexity proved above in Proposition
4. The entire proof is included here for completeness.

For any set M0 ⊆ P define the M0-restricted experiment partition R̃D e (M0) = (r̃1, . . . , r̃q)
to be the partition of P \ M0 such that r̃ i = r i \ M0 for each i ∈ {1, . . . , q}. Let r̃(P) be the
partition element containing P.

Theorem 4 (Generalization of Theorem 2 to Extended Experiments). The following are
equivalent:

(1) Experiment D e classifies a model M = (t1, . . . , tn, M0),
(2) D e separates every restricted boundary pair for model M, and



48 HEALY & LEO

(3) The M0-restricted experiment partition R̃D e (M0) is a refinement of the partition
(t1, . . . , tn).

Proof of Theorem 4. As in Theorem 3, equivalence between (1) and (3) is straightforward, so
we focus on the equivalence between (1) and (2).

Necessity is simple: If D e classifies M then all differentiated pairs are separated by D e,
and so every boundary pair must also be separated.

Before proceeding to prove sufficiency, we first prove that the sets in R̃D e are connected
subgraphs.

Lemma 7 (RD e is a Set of Connected Subgraphs). Each set r̃ i in R̃D e is a connected subgraph
on the restricted permutohedron.

Proof. Choose any two rankings P and P ′ such that r = r(P)= r(P ′). The proof is by induction
on the graph distance between P and P ′. If P and P ′ are of distance 1, then they are
restricted neighbors and thus connected within the set r. Now suppose they are graph
distance d apart, either they are restricted neighbors or there is some vertex on a shortest
path between them in the full permutohedron. Since extended experiments are convex by
Proposition 4, that vertex is in r. Furthermore, that vertex is no more than distance d−1
from both P and P ′. If every pair of rankings in the same set of the experiment partition
that are no more than distance d−1 apart are connected within their experiment set, then
two rankings in the same set that are distance d are connected as well. □

We are now ready to prove that separating all restricted boundary pairs is sufficient for
separating all differentiated pairs. We will prove the contrapositive: if D e fails to separate
some differentiated pair {P,P ′} then it must also fail to separate some boundary pair {P̂, P̂ ′}.
Since {P,P ′} is differentiated, we have that t(P) ̸= t(P ′). But if D e fails to separate them,
then r(P)= r(P ′).

By Lemma 7, there is a path from P to P ′ entirely in r̃(P). Since t(P) ̸= t(P ′), there is some
first pair of neighbors on this path P̂ and P̂ ′ where t(P̂) ̸= t(P̂ ′). But since this path lives
entirely inside r̃(P), so r̃(P̂) = r̃(P̂ ′). Thus, we have a boundary pair that is not separated,
completing the proof. □
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APPENDIX B. COMPUTATION TIME

To address the question of computational complexity, we run the algorithm described in
on a randomly generated models of different sizes. Specifically, we vary the number of

objects from |X | = 4 to 10 and vary the number of types in the model from n = 2 to 7. Each
type consists of three randomly chosen rankings. We run the algorithm for classifying the
(restricted) model, and again for classifying and testing the model. We run each 100 times
and report the mean and standard deviation of the computation time (in seconds) in Table
III.
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